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What type of system should we 
use to represent language?
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An apparent paradox
•Traditional view: Symbolic structure
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The surprising success of neural nets
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“Vectors that act like symbols”
• Why not just “vectors”?
• Deep learning already excels in:
• Language
• Math
• Board games
• …

• Answer: Despite appearances, deep learning systems 
already have implicit symbolic structure!
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Simplified case
• Number-to-word mapping:

16 5 40 → sixteen five forty
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Simplified case
• Number-to-word mapping:

• Number-to-word mapping (reversed):

16 5 40 → sixteen five forty
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16 5 40 → forty five sixteen

Requires symbolic 
structure: 
Which numbers 
and where?



Models
• Two sub-networks:
• Encoder
• Decoder
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Models

Goal: Understand 
the encoding vector

E

16 405

Decoder

forty five sixteen

Encoder Decoder
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Models
• RNN
• Transformer
• MLP
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Hypothesis: Neural networks implicitly 
implement symbolic representations

But how?

By constructing 
Tensor Product Representations



Tensor Product Representations
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Smolensky (1987)



Tensor Product Representations
• Example: Representing a sequence of numbers: 3, 6, 7
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Tensor Product Representations
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Both a vector and a 
symbolic structure!



Tensor Product Representations
• Hypothesis: Neural network representations are implicitly 

structured as Tensor Product Representations
• Even without being designed to have this structure!
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Tensor Product Representations
• Hypothesis: Neural network representations are implicitly 

structured as Tensor Product Representations
• Even without being designed to have this structure!

• To test the hypothesis: train Tensor Product Representations 
to approximate the neural network representations
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(McCoy, Linzen, Dunbar, Smolensky 2019: ICLR) (McCoy 2022: Dissertation)



Testing the hypothesis
• Model being analyzed:

• Train a Tensor Product Representation to approximate encodings:

three six seven3 6 7
Encoder Decoder
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Results
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Results with natural language
• Have also applied this approach to neural networks 

trained on natural language
• And have gotten promising results
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Modeling language learning
• Representations are one area where vectors and symbols 

seem mismatched
• Learning is another such area
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Modeling language learning
• Neural networks have some attractive properties as 

models of learning:
• Trained on naturalistic corpora
• By the end of training: They capture many aspects of linguistic 

structure
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Another candidate: Probabilistic models
• Represent hypotheses using symbolic grammars
• E.g., a context-free grammar
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S → NP VP
NP → Det N
VP → V NP
Det → the
Det → a
…



Probabilistic models
• Goal: Given a corpus, find the grammar that best describes 

the corpus
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Probabilistic models
• Goal: Given a corpus, find the grammar that best describes 

the corpus
• Need some way to decide what it means to “best describe”

• Answer: Probability
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Probabilistic models
• Goal: Given a corpus, find the grammar that best describes 

the corpus
• Need some way to decide what it means to “best describe”

• Answer: Probability

69

Prominent type of 
probabilistic model: 
Bayesian model



Probabilistic models
• Can learn effectively from small amounts of data
• Why? Using structured grammars as hypotheses guides the search
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Probabilistic models
• Can learn effectively from small amounts of data
• Why? Using structured grammars as hypotheses guides the search

• But they are typically intractable in naturalistic settings
• Hard to find a grammar that captures all the complexities of the data
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Modeling learning
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Modeling learning
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Modeling learning
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Modeling learning
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(e.g., Bayesian)
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Proposal: Inductive bias distillation
• Distill Bayesian inductive biases into a neural network
• Neural network → flexible
• Strong inductive bias → rapid learning
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Sounds nice…but how can 
we actually do it?
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Inductive bias distillation
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Probabilistic 
model

plus(D)

𝑝 ℎ 𝑑 =
𝑝 𝑑 ℎ 𝑝(ℎ)

𝑝(𝑑)

ℎ =
concat(

or(A, C),
plus(A),
Σ,
or(ε, B))

ℎ =



Inductive bias distillation
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Probabilistic 
model

Training 
data

sampling

Task 1

…

plus(D)

𝑝 ℎ 𝑑 =
𝑝 𝑑 ℎ 𝑝(ℎ)

𝑝(𝑑)

ℎ =
concat(

or(A, C),
plus(A),
Σ,
or(ε, B))

ℎ =
Task 2

Task n



Inductive bias distillation
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Probabilistic 
model

Training 
data

sampling meta
learning

Task 1

…

Neural 
network

plus(D)

𝑝 ℎ 𝑑 =
𝑝 𝑑 ℎ 𝑝(ℎ)

𝑝(𝑑)

ℎ =
concat(

or(A, C),
plus(A),
Σ,
or(ε, B))

ℎ =
Task 2

Task n



Inductive bias distillation
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Formal languages
• plus(concatenate(A, B))

• AB
• ABAB
• ABABAB
• …
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Formal languages
• Inspired by the structure of natural language
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Formal languages
• Inspired by the structure of natural language
• Consider plus(concatenate(A, B)): AB, ABAB, ABABAB, …
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Formal languages
• Inspired by the structure of natural language
• Consider plus(concatenate(A, B)): AB, ABAB, ABABAB, …

• A → preposition
• B → noun phrase
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Formal languages
• Inspired by the structure of natural language
• Consider plus(concatenate(A, B)): AB, ABAB, ABABAB, …

• A → preposition
• B → noun phrase
• on the table by the door in the kitchen
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Probabilistic model
• Probabilistically combine primitives into formal 
languages
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plus

or

A

B

plus(or(A,B))



Inductive bias distillation
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Inductive bias distillation
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Inductive bias distillation
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Sampling formal languages
• plus(A)
• D
• concat(A, B, A)
• concat(plus(or(A, concat(C, A, C)), or(plus(D), A))
• or(A, A)
• B
• …
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Inductive bias distillation
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Inductive bias distillation
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Meta-learning
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Meta-learning
•Learning to learn

103



Meta-learning
• Approach:
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Meta-learning
• Approach:
• Show the model many languages

• Giving it linguistic inductive biases (which types of languages are 
likely/unlikely?)
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Meta-learning
• Approach:
• Show the model many languages

• Giving it linguistic inductive biases (which types of languages are 
likely/unlikely?)

• By controlling the languages, we control the model’s inductive 
biases
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Meta-learning
• Approach:
• Show the model many languages

• Giving it linguistic inductive biases (which types of languages are 
likely/unlikely?)

• By controlling the languages, we control the model’s inductive 
biases

• Variant that we use: MAML (Finn et al. 2017)
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Meta-learning
• Result: A prior-trained neural network
• Trained to have a particular prior 
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Meta-learning
• Result: A prior-trained neural network
• Trained to have a particular prior 

• Different from pre-trained:
• Trained to learn aspects of the intended task – learning, not meta-

learning
• The prior is an indirect byproduct, not a direct target
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Results: Learning formal languages
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Results: Learning formal languages
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Bayesian model
(Yang & Piantadosi)



Results: Learning formal languages
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Standard 
neural network

Bayesian model
(Yang & Piantadosi)



Results: Learning formal languages
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Standard 
neural network

Bayesian model
(Yang & Piantadosi)

Prior-trained 
neural network



Time
• Bayesian model: 1 minute to 7 days
• Not feasible to train on naturalistic data
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Time
• Bayesian model: 1 minute to 7 days
• Not feasible to train on naturalistic data

• Prior-trained neural network: 10 milliseconds to 3 minutes
• Can train on naturalistic data!
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Training on English
• Child-directed speech
• 8 million words
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Training on English: Results
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Best in prior 
literature

Perplexity 
(lower is better)

Standard Prior-trained



Recursion
• The prior included the Kleene plus primitive

• plus(B) = {B, BB, BBB, …}
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Recursion
• The prior included the Kleene plus primitive

• plus(B) = {B, BB, BBB, …}
• Does the prior-trained model handle recursion well?
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Recursion
1. The book sitting on the table is blue.
2. The book sits on the table is blue.
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✅

❌



Recursion
1. The book sitting on the table is blue.
2. The book sits on the table is blue.
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Test: Do models recognize 
that (1) is better than (2)?

✅

❌



Recursion
1. The book sitting on the table is blue.
2. The book sits on the table is blue.
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Test: Do models recognize 
that (1) is better than (2)?

✅

❌



Recursion
1. The book sitting on the table in the kitchen is blue.
2. The book sits on the table in the kitchen is blue.
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Test: Do models recognize 
that (1) is better than (2)?

✅

❌



Recursion
1. The book sitting on the table in the kitchen by 

the door is blue.
2. The book sits on the table in the kitchen by the 

door is blue.
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Test: Do models recognize 
that (1) is better than (2)?

✅

❌



Recursion: Results
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Standard 
neural network

Prior-trained 
neural network



Recursion: Results
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Learning formal 
languages from few 
examples
Learning aspects of 
English from 
naturalistic data
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Bayesian 
model

Learning formal 
languages from few 
examples

✅

Learning aspects of 
English from 
naturalistic data

❌
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Bayesian 
model

Standard neural 
network

Learning formal 
languages from few 
examples

✅ ❌

Learning aspects of 
English from 
naturalistic data

❌ ✅
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Bayesian 
model

Standard neural 
network

Prior-trained 
neural network

Learning formal 
languages from few 
examples

✅ ❌ ✅

Learning aspects of 
English from 
naturalistic data

❌ ✅ ✅



Concept learning
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Concept learning
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Conclusion
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Q: What type of system 
should we use to 

represent language?

A: Vectors that act like 
symbols
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Tensor Product Representations
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Q: What type of system 
should we use to 

represent language?

A: Vectors that act like 
symbols

Compositional representations
Tensor Product Representations

Strong inductive biases
Inductive bias distillation
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Symbolic structures

Vectors

Tensor Product Representations
and

Neural Networks with Meta-Learning

PointillismJackson Pollock

Classical painting



A symbolic victory?
• The framing I’ve used might seem like a resounding 

victory for the symbolic perspective
• I.e., the role of vectors is just to implement symbols!

• But the truth is probably more complex
• The fact that the symbols are implemented in vectors 

might have important consequences
• Ability to deviate from pure symbolic structure to handle exceptions, 

context, etc.
• Flexibility for learning
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How to get there?
• On one hand, neural networks naturally develop 

compositional structure on their own
• So maybe we don’t need to consciously have symbols in mind 

when developing systems
• On the other hand: Incorporating soft versions of symbols 

might be useful as an inductive bias
• Architectures with compositional structure
• Training paradigms that encourage symbolic processing
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Thank you!
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• Funding: NSF GRFP #1746891, 
NSF SPRF #2204152 
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