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What type of system should we
use to represent language?
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Jackson Pollock

Girl with a Pearl Earring



The surprising success of neural nets
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“Vectors that act like symbols”

- Why not just “vectors™?

- Deep learning already excels in:
- Language
- Math
- Board games

- Answer: Despite appearances, deep learning systems
already have implicit symbolic structure!



Simplified case

- Number-to-word mapping:

16 5 40 — sixteen five forty



Simplified case

_ Requires symbolic
- Number-to-word mapping: structure:
Which numbers
16 5 40 — sixteen five forty and where?

- Number-to-word mapping (reversed):

16 5 40 — forty five sixteen



I
Models

- Two sub-networks:
- Encoder
- Decoder
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.
Models

- RNN

- Transformer
- MLP
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Tensor Product Representations

Smolensky (1987)



Tensor Product Representations

- Example: Representing a sequence of numbers: 3, 6, 7
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Tensor Product Representations
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Tensor Product Representations

- Hypothesis: Neural network representations are implicitly
structured as Tensor Product Representations
- Even without being designed to have this structure!



Symbolic structures
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Tensor Product Representations

Symbolic structures
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Tensor Product Representations

- Hypothesis: Neural network representations are implicitly
structured as Tensor Product Representations
- Even without being designed to have this structure!

- To test the hypothesis: train Tensor Product Representations
to approximate the neural network representations

(McCoy, Linzen, Dunbar, Smolensky 2019: ICLR) (McCoy 2022: Dissertation)
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Results with natural language

- Have also applied this approach to neural networks
trained on natural language
- And have gotten promising results
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Modeling language learning

- Representations are one area where vectors and symbols
seem mismatched

- Learning is another such area



Modeling language learning

- Neural networks have some attractive properties as
models of learning:
- Trained on naturalistic corpora

- By the end of training: They capture many aspects of linguistic
structure



5
Problem: Data quantity

300 billion -
200 billion -
Words
encountered
100 billion -
O -

Human GP:I'—3



Another candidate: Probabilistic models

- Represent hypotheses using symbolic grammars
- E.g., a context-free grammar

S —>NPVP
NP — Det N
VP — V NP
Det — the
Det — a



Probabilistic models

- Goal: Given a corpus, find the grammar that best describes
the corpus
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- Goal: Given a corpus, find the grammar that best describes
the corpus

- Need some way to decide what it means to “best describe”
- Answer: Probability

Prominent type of
probabilistic model:
Bayesian model
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Probabilistic models

- Can learn effectively from small amounts of data
- Why? Using structured grammars as hypotheses guides the search

- But they are typically intractable in naturalistic settings
- Hard to find a grammar that captures all the complexities of the data
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Modeling learning

Probabilistic models

Neural networks

(e.g., Bayesian)

Strong representational
commitments: Symbols

Strong inductive biases

Effective generalization
from limited data

Struggle to tractably
handle natural data

Representational
flexibility: Vectors

Weak inductive biases
Require lots of data

Can handle complex,
natural data



Proposal: Inductive bias distillation

- Distill Bayesian inductive biases into a neural network
- Neural network — flexible
- Strong inductive bias — rapid learning

Sounds nice...but how can
we actually do it?



Modeling rapid language learning by distilling Bayesian priors
into artificial neural networks

R. Thomas McCoy'* and Thomas L. Griffiths?!

Universal linguistic inductive biases via meta-learning

R. Thomas McCoy,! Erin Grant,> Paul Smolensky,*! Thomas L. Griffiths,* and Tal Linzen!




Inductive bias distillation
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Probabilistic
model
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Inductive bias distillation
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h = plus(D)
Task 2
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Inductive bias distillation
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Task 2
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One model for the learning of language

Yuan Yang?® and Steven T. Piantadosi®'®

2College of Computing, Georgia Institute of Technology, Atlanta, GA 30332; and PDepartment of Psychology, Hele
of California, Berkeley, CA 94720



Formal languages

- plus(concatenate(A, B))
- AB
- ABAB
- ABABAB
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Formal languages

- Inspired by the structure of natural language

- Consider plus(concatenate(A, B)): AB, ABAB, ABABAB, ...
- A — preposition
- B — noun phrase
- on the table by the door in the kitchen




Probabilistic model

- Probabilistically combine primitives into formal
languages

plus
= plus(or(A,B))
or




Inductive bias distillation
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Inductive bias distillation

d|h)p(h
p(hld) = p(d| le( )
p(d) Language 1
h = plus(D)
h = concat( . Language 2 meta
or(A, 0), sampling learning
plus(A),
Z,
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Probabillistic Training Neural

model data network



Sampling formal languages

- plus(A)

-D

- concat(A, B, A)

- concat(plus(or(A, concat(C, A, C)), or(plus(D), A))
- or(A, A)

-B



Inductive bias distillation
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Inductive bias distillation

p(d[p(h)
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h = plus(D)

p(hld) =
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Meta-learning

- Learning to learn

7 RN
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Meta-learning

- Approach:
- Show the model many languages

- Giving it linguistic inductive biases (which types of languages are
likely/unlikely?)
- By controlling the languages, we control the model’s inductive
biases

- Variant that we use: MAML (Finn et al. 2017)
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- Result: A prior-trained neural network
- Trained to have a particular prior



Meta-learning

- Result: A prior-trained neural network
- Trained to have a particular prior

- Different from pre-trained:

- Trained to learn aspects of the intended task — learning, not meta-
learning

- The prior is an indirect byproduct, not a direct target



Results: Learning formal languages
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Results: Learning formal languages
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Time

- Bayesian model: 1 minute to 7 days
- Not feasible to train on naturalistic data



.
Time

- Bayesian model: 1 minute to 7 days
- Not feasible to train on naturalistic data

- Prior-trained neural network: 10 milliseconds to 3 minutes
- Can train on naturalistic data!



Training on English

- Child-directed speech
- 8 million words



Training on English: Results
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Recursion

- The prior included the Kleene plus primitive
- plus(B) = {B, BB, BBB, ...}



Recursion

- The prior included the Kleene plus primitive
- plus(B) = {B, BB, BBB, ...}
- Does the prior-trained model handle recursion well?
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Recursion

1. The book sitting on the table in the kitchen is blue.
X 2. The book sits on the table in the kitchen is blue.

Test: Do models recognize
that (1) is better than (2)?




Recursion

1. The book sitting on the table in the kitchen by
the door is blue.

X 2. The book sits on the table in the kitchen by the
door is blue.

Test: Do models recognize
that (1) is better than (2)?




Recursion: Results
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Accuracy

Recursion: Results
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Concept learning

Distilling Symbolic Priors for Concept Learning into Neural Networks
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Concept learning
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Conclusion
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Q: What type of system
should we use to
represent language?

A: Vectors that act like
symbols

/\

Compositional representations Strong inductive biases
Tensor Product Representations Inductive bias distillation




Tensor Product Representations
and
Neural Networks with Meta-Learning

Symbolic structures

Jackson Pollock Pointillism



A symbolic victory?

- The framing I've used might seem like a resounding
victory for the symbolic perspective

- l.e., the role of vectors is just to implement symbols!

- But the truth is probably more complex

- The fact that the symbols are implemented in vectors
might have important consequences

- Ability to deviate from pure symbolic structure to handle exceptions,
context, etc.

- Flexibility for learning



How to get there”

- On one hand, neural networks naturally develop
compositional structure on their own
- S0 maybe we don’t need to consciously have symbols in mind
when developing systems
- On the other hand: Incorporating soft versions of symbols
might be useful as an inductive bias
- Architectures with compositional structure
- Training paradigms that encourage symbolic processing
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