
Thinking Like Transformers

13945 + 2903482

2917427

 ?????

Practical Session

1

Follow along:

github.com/tech-srl/RASP

1. clone
2. set up:

1. macOS, linux: ./install.sh

2. windows: follow “windows instructions.txt”

3. run:

1. macOS, linux: ./rasp.sh

2. windows: python3 RASP_support/REPL.py

RASP introduced: Thinking like transformers (paper, ICML 2021)

Long addition: Thinking like transformers (blog, ICLR 2023)

Gail Weiss, Yoav Goldberg, Eran Yahav

Alexander Rush, Gail Weiss

http://github.com/tech-srl/RASP

2

Transformer

[h, e, l, l, o]

[a, b, c, d, e]

Transformer

Note - model vs use

A transformer by itself is a
length preserving function!

To avoid confusion, we’ll briefly describe the non-length-preserving behaviour that you’re used to before we start

3

Transformer

[h, e, l, l, o]

[a, b, c, d, e]

Transformer

Transformer

[h, e, l, l, y]

[f, g, h, i, j, k]

Note - model vs use

Transformer

[h, e, l, l, o]

[a, b, c, d, e]

Causal Transformer

Transformer

[h, e, l, l, y]

[a, b, c, d, f]

4

Transformer

[h, e, l, l, o]

[a, b, c, d, e]

Causal/autoregressive transformer in classic generative loop

Transformer

[h, e, l, l, o]

[a, b, c, d, e]

Transformer

Note - model vs use

Prompt

5

Transformer

[h, e, l, l, o]

[a, b, c, d, e]

Causal/autoregressive transformer in classic generative loop

[h, e, l, l, o, e]

Transformer

[h, e, l, l, o]

[a, b, c, d, e]

Transformer

Note - model vs use

Prompt

6

Transformer

[h, e, l, l, o]

[a, b, c, d, e]

Causal/autoregressive transformer in classic generative loop

Transformer

[h, e, l, l, o, e]

Transformer

[h, e, l, l, o]

[a, b, c, d, e]

Transformer

Note - model vs use

Prompt

7

Transformer

[h, e, l, l, o]

[a, b, c, d, e]

Causal/autoregressive transformer in classic generative loop

Transformer

[h, e, l, l, o, e]

[a, b, c, d, e, q]

Transformer

[h, e, l, l, o]

[a, b, c, d, e]

Transformer

Note - model vs use

Prompt

8

Transformer

[h, e, l, l, o]

[a, b, c, d, e]

Causal/autoregressive transformer in classic generative loop

Transformer

[h, e, l, l, o, e]

[a, b, c, d, e, q]

Transformer

[h, e, l, l, o, e, q]

[a, b, c, d, e, q, 2]

Transformer

[h, e, l, l, o]

[a, b, c, d, e]

Transformer

Note - model vs use

Prompt

9

Transformer

[h, e, l, l, o]

[a, b, c, d, e]

Causal/autoregressive transformer in classic generative loop

Transformer

[h, e, l, l, o, e]

[a, b, c, d, e, q]

Transformer

[h, e, l, l, o, e, q]

[a, b, c, d, e, q, 2]

Transformer

[h, e, l, l, o, e, q, 2]

[a, b, c, d, e, q, q]

…

Transformer

[h, e, l, l, o]

[a, b, c, d, e]

Transformer

Note - model vs use

Prompt

10

Transformer

[h, e, l, l, o]

[a, b, c, d, e]

Causal/autoregressive transformer in classic generative loop

Transformer

[h, e, l, l, o, e]

[a, b, c, d, e, q]

Transformer

[h, e, l, l, o, e, q]

[a, b, c, d, e, q, 2]

Transformer

[h, e, l, l, o, e, q, 2]

[a, b, c, d, e, q, q]

…

The
generative

loop moves to
non-length
preserving
behaviour

Transformer

[h, e, l, l, o]

[a, b, c, d, e]

Transformer

Note - model vs use

Prompt

11

Transformer

[h, e, l, l, o]

[a, b, c, d, e]

Transformer

Transformer

[h, e, l, l, o]

[a, b, c, d, e]

Plain transformer in classic generative loop

Transformer

[h, e, l, l, o, e]

[O, p, A, m, n, q]

Transformer

[h, e, l, l, o, e, q]

[z, Y, 0, 2, x, m, 2]

Transformer

[h, e, l, l, o, e, q, 2]

[5, g, Y, p, r, Z, w, q]

…

Transformer

[h, e, l, l, o]

[a, b, c, d, e]

Causal/autoregressive transformer in classic generative loop

Transformer

[h, e, l, l, o, e]

[a, b, c, d, e, q]

Transformer

[h, e, l, l, o, e, q]

[a, b, c, d, e, q, 2]

Transformer

[h, e, l, l, o, e, q, 2]

[a, b, c, d, e, q, q]

…

Note - model vs use

Prompt

The
generative

loop moves to
non-length
preserving
behaviour

Probably
works well,
maybe even
better - but

very inefficient
(redo entire

computation
for every

prediction)

works well

Note - model vs use

12 We will not focus on the “generative” case, or the causal restriction - just the transformer model itself

Transformer

[h, e, l, l, o]

[a, b, c, d, e]

Transformer

Transformer

[h, e, l, l, o]

[a, b, c, d, e]

Plain transformer in classic generative loop

Transformer

[h, e, l, l, o, e]

[O, p, A, m, n, q]

Transformer

[h, e, l, l, o, e, q]

[z, Y, 0, 2, x, m, 2]

Transformer

[h, e, l, l, o, e, q, 2]

[5, g, Y, p, r, Z, w, q]

…

Transformer

[h, e, l, l, o]

[a, b, c, d, e]

Causal/autoregressive transformer in classic generative loop

Transformer

[h, e, l, l, o, e]

[a, b, c, d, e, q]

Transformer

[h, e, l, l, o, e, q]

[a, b, c, d, e, q, 2]

Transformer

[h, e, l, l, o, e, q, 2]

[a, b, c, d, e, q, q]

…

Prompt

Prompt

Transformer model Transformer

[h, e, l, l, o]

• Base s-ops:

• tokens([a, b, c]) = [a, b, c]

• indices([a, b, c]) = [0, 1, 2]

• 0([a, b, c]) = [0, 0, 0]

• (all other constants)

• Elementwise operations:

• (indices+1)([a, b, c]) = [1, 2, 3]

• (3 if tokens==“b” else 0)([a, b, c]) = [0, 3, 0]

• (all other basic char/num/bool operations)

• Select-Aggregate operations:

• select(indices, indices+1, ==)([a, b, c])= (mark as s)

• aggregate(s, tokens, “!”)([a, b, c]) = [b, c, !]

13

[a, b, c, d, e]

Transformer

[h, e, l, l, o]

embed

• Base s-ops:

• tokens([a, b, c]) = [a, b, c]

• indices([a, b, c]) = [0, 1, 2]

• 0([a, b, c]) = [0, 0, 0]

• (all other constants)

• Elementwise operations:

• (indices+1)([a, b, c]) = [1, 2, 3]

• (3 if tokens==“b” else 0)([a, b, c]) = [0, 3, 0]

• (all other basic char/num/bool operations)

• Select-Aggregate operations:

• select(indices, indices+1, ==)([a, b, c])= (mark as s)

• aggregate(s, tokens, “!”)([a, b, c]) = [b, c, !]

14

[a, b, c, d, e]

Transformer model

Transformer

[h, e, l, l, o]

embed

• Base s-ops:

• tokens([a, b, c]) = [a, b, c]

• indices([a, b, c]) = [0, 1, 2]

• 0([a, b, c]) = [0, 0, 0]

• (all other constants)

• Elementwise operations:

• (indices+1)([a, b, c]) = [1, 2, 3]

• (3 if tokens==“b” else 0)([a, b, c]) = [0, 3, 0]

• (all other basic char/num/bool operations)

• Select-Aggregate operations:

• select(indices, indices+1, ==)([a, b, c])= (mark as s)

• aggregate(s, tokens, “!”)([a, b, c]) = [b, c, !]

15

Layer 1

[a, b, c, d, e]

Transformer model

Transformer

[h, e, l, l, o]

embed

• Base s-ops:

• tokens([a, b, c]) = [a, b, c]

• indices([a, b, c]) = [0, 1, 2]

• 0([a, b, c]) = [0, 0, 0]

• (all other constants)

• Elementwise operations:

• (indices+1)([a, b, c]) = [1, 2, 3]

• (3 if tokens==“b” else 0)([a, b, c]) = [0, 3, 0]

• (all other basic char/num/bool operations)

• Select-Aggregate operations:

• select(indices, indices+1, ==)([a, b, c])= (mark as s)

• aggregate(s, tokens, “!”)([a, b, c]) = [b, c, !]

16

Layer 1

Layer 2

…

[a, b, c, d, e]

Transformer model

Transformer

[h, e, l, l, o]

embed

• Base s-ops:

• tokens([a, b, c]) = [a, b, c]

• indices([a, b, c]) = [0, 1, 2]

• 0([a, b, c]) = [0, 0, 0]

• (all other constants)

• Elementwise operations:

• (indices+1)([a, b, c]) = [1, 2, 3]

• (3 if tokens==“b” else 0)([a, b, c]) = [0, 3, 0]

• (all other basic char/num/bool operations)

• Select-Aggregate operations:

• select(indices, indices+1, ==)([a, b, c])= (mark as s)

• aggregate(s, tokens, “!”)([a, b, c]) = [b, c, !]

17

Layer 1

Layer 2

Layer L

…

[a, b, c, d, e]

Transformer model

Transformer

[h, e, l, l, o]

embed

• Base s-ops:

• tokens([a, b, c]) = [a, b, c]

• indices([a, b, c]) = [0, 1, 2]

• 0([a, b, c]) = [0, 0, 0]

• (all other constants)

• Elementwise operations:

• (indices+1)([a, b, c]) = [1, 2, 3]

• (3 if tokens==“b” else 0)([a, b, c]) = [0, 3, 0]

• (all other basic char/num/bool operations)

• Select-Aggregate operations:

• select(indices, indices+1, ==)([a, b, c])= (mark as s)

• aggregate(s, tokens, “!”)([a, b, c]) = [b, c, !]

18

Layer 1

Layer 2

Layer L

de-embed

…

[a, b, c, d, e]

Transformer model

Transformer

[h, e, l, l, o]

embed

• Base s-ops:

• tokens([a, b, c]) = [a, b, c]

• indices([a, b, c]) = [0, 1, 2]

• 0([a, b, c]) = [0, 0, 0]

• (all other constants)

• Elementwise operations:

• (indices+1)([a, b, c]) = [1, 2, 3]

• (3 if tokens==“b” else 0)([a, b, c]) = [0, 3, 0]

• (all other basic char/num/bool operations)

• Select-Aggregate operations:

• select(indices, indices+1, ==)([a, b, c])= (mark as s)

• aggregate(s, tokens, “!”)([a, b, c]) = [b, c, !]

19

Layer 1

Layer 2

Layer L

de-embed

…

[a, b, c, d, e]

Transformer model

Goal: understand how transformers process input

Transformer

[h, e, l, l, o]

embed

• Base s-ops:

• tokens([a, b, c]) = [a, b, c]

• indices([a, b, c]) = [0, 1, 2]

• 0([a, b, c]) = [0, 0, 0]

• (all other constants)

• Elementwise operations:

• (indices+1)([a, b, c]) = [1, 2, 3]

• (3 if tokens==“b” else 0)([a, b, c]) = [0, 3, 0]

• (all other basic char/num/bool operations)

• Select-Aggregate operations:

• select(indices, indices+1, ==)([a, b, c])= (mark as s)

• aggregate(s, tokens, “!”)([a, b, c]) = [b, c, !]

20

Layer 1

Layer 2

Layer L

de-embed

…

[a, b, c, d, e]

Transformer model

Approach:

Internal embeddings are not meaningless
vectors, they carry meaning. Describe with

symbolic values

Layers are not meaningless manipulations, they
perform meaningful operations on these values.

Describe these operations

Goal: understand how transformers process input

 view transformer as executing a short program→

RASP (Restricted Access Sequence Processing)

• State: Transformer architecture processes input sequences,
with specific operations

• Goal: describe/understand these operations

• Result:

• Abstract transformers as class of sequence-to-
sequence functions, the “sequence operators” (s-ops)

• Define function space inductively with RASP:

• base s-ops, and

• operations to create new s-ops

Transformer

[h, e, l, l, o]

[a, b, c, d, e]

Sequence Operator

[h, e, l, l, o]

[a, b, c, d, e]

21

RASP (Restricted Access Sequence Processing)

• State: Transformer architecture processes input sequences,
with specific operations

• Goal: describe/understand these operations

• Result:

• Abstract transformers as class of sequence-to-
sequence functions, the “sequence operators” (s-ops)

• Define function space inductively with RASP:

• base s-ops (program inputs), and

• operations to create new s-ops (program lines)

22

Transformer

[h, e, l, l, o]

[a, b, c, d, e]

Sequence Operator

[h, e, l, l, o]

[a, b, c, d, e]

RASP s-ops and operations Transformer

[h, e, l, l, o]

embed

• Base s-ops:

• tokens([a, b, c]) = [a, b, c]

• indices([a, b, c]) = [0, 1, 2]

• 0([a, b, c]) = [0, 0, 0]

• (all other constants)

• Elementwise operations:

• (indices+1)([a, b, c]) = [1, 2, 3]

• (3 if tokens==“b” else 0)([a, b, c]) = [0, 3, 0]

• (all other basic char/num/bool operations)

• Select-Aggregate operations:

• select(indices, indices+1, ==)([a, b, c])= (mark as s)

• aggregate(s, tokens, “!”)([a, b, c]) = [b, c, !]

23

Follow along:

github.com/tech-srl/RASP

1. clone
2. set up:

1. macOS, linux: ./install.sh

2. windows: follow “windows instructions.txt”

3. run:

1. macOS, linux: ./rasp.sh

2. windows: python3 RASP_support/REPL.py

http://github.com/tech-srl/RASP

RASP s-ops and operations Transformer

[h, e, l, l, o]

embed

• Base s-ops:

• tokens([a, b, c]) = [a, b, c]

• indices([a, b, c]) = [0, 1, 2]

• 0([a, b, c]) = [0, 0, 0]

• (all other constants)

• Elementwise operations:

• (indices+1)([a, b, c]) = [1, 2, 3]

• (3 if tokens==“b” else 0)([a, b, c]) = [0, 3, 0]

• (all other basic char/num/bool operations)

• Select-Aggregate operations:

• select(indices, indices+1, ==)([a, b, c])= (mark as s)

• aggregate(s, tokens, “!”)([a, b, c]) = [b, c, !]

24

Follow along:

github.com/tech-srl/RASP

1. clone
2. set up:

1. macOS, linux: ./install.sh

2. windows: follow “windows instructions.txt”

3. run:

1. macOS, linux: ./rasp.sh

2. windows: python3 RASP_support/REPL.py

http://github.com/tech-srl/RASP

RASP s-ops and operations Transformer

[h, e, l, l, o]

embed
[(h, 0), (e, 1), (l, 2), (l, 3), (o, 4)]

• Base s-ops:

• tokens([a, b, c]) = [a, b, c]

• indices([a, b, c]) = [0, 1, 2]

• 0([a, b, c]) = [0, 0, 0]

• (all other constants)

• Elementwise operations:

• (indices+1)([a, b, c]) = [1, 2, 3]

• (3 if tokens==“b” else 0)([a, b, c]) = [0, 3, 0]

• (all other basic char/num/bool operations)

• Select-Aggregate operations:

• select(indices, indices+1, ==)([a, b, c])= (mark as s)

• aggregate(s, tokens, “!”)([a, b, c]) = [b, c, !]

25

Follow along:

github.com/tech-srl/RASP

1. clone
2. set up:

1. macOS, linux: ./install.sh

2. windows: follow “windows instructions.txt”

3. run:

1. macOS, linux: ./rasp.sh

2. windows: python3 RASP_support/REPL.py

http://github.com/tech-srl/RASP

RASP s-ops and operations Transformer

[h, e, l, l, o]

embed
[h, e, l, l, o]

[0, 1, 2, 3, 4]

• Base s-ops:

• tokens([a, b, c]) = [a, b, c]

• indices([a, b, c]) = [0, 1, 2]

• 0([a, b, c]) = [0, 0, 0]

• (all other constants)

• Elementwise operations:

• (indices+1)([a, b, c]) = [1, 2, 3]

• (3 if tokens==“b” else 0)([a, b, c]) = [0, 3, 0]

• (all other basic char/num/bool operations)

• Select-Aggregate operations:

• select(indices, indices+1, ==)([a, b, c])= (mark as s)

• aggregate(s, tokens, “!”)([a, b, c]) = [b, c, !]

26

Follow along:

github.com/tech-srl/RASP

1. clone
2. set up:

1. macOS, linux: ./install.sh

2. windows: follow “windows instructions.txt”

3. run:

1. macOS, linux: ./rasp.sh

2. windows: python3 RASP_support/REPL.py

http://github.com/tech-srl/RASP

RASP s-ops and operations Transformer

[h, e, l, l, o]

embed
[h, e, l, l, o]

[0, 1, 2, 3, 4]

• Base s-ops:

• tokens([a, b, c]) = [a, b, c]

• indices([a, b, c]) = [0, 1, 2]

• 0([a, b, c]) = [0, 0, 0]

• (all other constants)

• Elementwise operations:

• (indices+1)([a, b, c]) = [1, 2, 3]

• (3 if tokens==“b” else 0)([a, b, c]) = [0, 3, 0]

• (all other basic char/num/bool operations)

• Select-Aggregate operations:

• select(indices, indices+1, ==)([a, b, c])= (mark as s)

• aggregate(s, tokens, “!”)([a, b, c]) = [b, c, !]

•

27

Follow along:

github.com/tech-srl/RASP

1. clone
2. set up:

1. macOS, linux: ./install.sh

2. windows: follow “windows instructions.txt”

3. run:

1. macOS, linux: ./rasp.sh

2. windows: python3 RASP_support/REPL.py

http://github.com/tech-srl/RASP

RASP s-ops and operations Transformer

[h, e, l, l, o]

embed
[h, e, l, l, o]

[0, 1, 2, 3, 4]

• Base s-ops:

• tokens([a, b, c]) = [a, b, c]

• indices([a, b, c]) = [0, 1, 2]

• 0([a, b, c]) = [0, 0, 0]

• (all other constants)

• Elementwise operations:

• (indices+1)([a, b, c]) = [1, 2, 3]

• (3 if tokens==“b” else 0)([a, b, c]) = [0, 3, 0]

• (all other basic char/num/bool operations)

• Select-Aggregate operations:

• select(indices, indices+1, ==)([a, b, c])= (mark as s)

• aggregate(s, tokens, “!”)([a, b, c]) = [b, c, !]

•

28

Follow along:

github.com/tech-srl/RASP

1. clone
2. set up:

1. macOS, linux: ./install.sh

2. windows: follow “windows instructions.txt”

3. run:

1. macOS, linux: ./rasp.sh

2. windows: python3 RASP_support/REPL.py

http://github.com/tech-srl/RASP

RASP s-ops and operations Transformer

[h, e, l, l, o]

embed
[h, e, l, l, o]

[0, 1, 2, 3, 4]

• Base s-ops:

• tokens([a, b, c]) = [a, b, c]

• indices([a, b, c]) = [0, 1, 2]

• 0([a, b, c]) = [0, 0, 0]

• (all other constants)

• Elementwise operations:

• (indices+1)([a, b, c]) = [1, 2, 3]

• (3 if tokens==“b” else 0)([a, b, c]) = [0, 3, 0]

• (all other basic char/num/bool operations)

• Select-Aggregate operations:

• select(indices, indices+1, ==)([a, b, c])= (mark as s)

• aggregate(s, tokens, “!”)([a, b, c]) = [b, c, !]

•

Layer 1

29

Follow along:

github.com/tech-srl/RASP

1. clone
2. set up:

1. macOS, linux: ./install.sh

2. windows: follow “windows instructions.txt”

3. run:

1. macOS, linux: ./rasp.sh

2. windows: python3 RASP_support/REPL.py

http://github.com/tech-srl/RASP

RASP s-ops and operations Transformer

[h, e, l, l, o]

embed
[h, e, l, l, o]

[0, 1, 2, 3, 4]

• Base s-ops:

• tokens([a, b, c]) = [a, b, c]

• indices([a, b, c]) = [0, 1, 2]

• 0([a, b, c]) = [0, 0, 0]

• (all other constants)

• Elementwise operations:

• (indices+1)([a, b, c]) = [1, 2, 3]

• (3 if tokens==“b” else 0)([a, b, c]) = [0, 3, 0]

• (all other basic char/num/bool operations)

• Select-Aggregate operations:

• select(indices, indices+1, ==)([a, b, c])= (mark as s)

• aggregate(s, tokens, “!”)([a, b, c]) = [b, c, !]

•

Layer 1

Feed Forward

30

Follow along:

github.com/tech-srl/RASP

1. clone
2. set up:

1. macOS, linux: ./install.sh

2. windows: follow “windows instructions.txt”

3. run:

1. macOS, linux: ./rasp.sh

2. windows: python3 RASP_support/REPL.py

http://github.com/tech-srl/RASP

RASP s-ops and operations Transformer

[h, e, l, l, o]

embed
[h, e, l, l, o]

[0, 1, 2, 3, 4]

• Base s-ops:

• tokens([a, b, c]) = [a, b, c]

• indices([a, b, c]) = [0, 1, 2]

• 0([a, b, c]) = [0, 0, 0]

• (all other constants)

• Elementwise operations:

• (indices+1)([a, b, c]) = [1, 2, 3]

• (3 if tokens==“b” else 0)([a, b, c]) = [0, 3, 0]

• (all other basic char/num/bool operations)

• Select-Aggregate operations:

• select(indices, indices+1, ==)([a, b, c])= (mark as s)

• aggregate(s, tokens, “!”)([a, b, c]) = [b, c, !]

•

Layer 1

Feed Forward

[1, 2, 3, 4, 5]

31

Follow along:

github.com/tech-srl/RASP

1. clone
2. set up:

1. macOS, linux: ./install.sh

2. windows: follow “windows instructions.txt”

3. run:

1. macOS, linux: ./rasp.sh

2. windows: python3 RASP_support/REPL.py

http://github.com/tech-srl/RASP

RASP s-ops and operations Transformer

[h, e, l, l, o]

embed
[h, e, l, l, o]

[0, 1, 2, 3, 4]

• Base s-ops:

• tokens([a, b, c]) = [a, b, c]

• indices([a, b, c]) = [0, 1, 2]

• 0([a, b, c]) = [0, 0, 0]

• (all other constants)

• Elementwise operations:

• (indices+1)([a, b, c]) = [1, 2, 3]

• (tokens==“b”)([a, b, c]) = [False, True, False]

• (3 if tokens==“b” else 0)([a, b, c]) = [0, 3, 0]

• (all other basic char/num/bool operations)

• Select-Aggregate operations:

• select(indices, indices+1, ==)([a, b, c])= (mark as s)

• aggregate(s, tokens, “!”)([a, b, c]) = [b, c, !]

•

Layer 1

Feed Forward

[1, 2, 3, 4, 5]

32

Follow along:

github.com/tech-srl/RASP

1. clone
2. set up:

1. macOS, linux: ./install.sh

2. windows: follow “windows instructions.txt”

3. run:

1. macOS, linux: ./rasp.sh

2. windows: python3 RASP_support/REPL.py

http://github.com/tech-srl/RASP

RASP s-ops and operations Transformer

[h, e, l, l, o]

embed
[h, e, l, l, o]

[0, 1, 2, 3, 4]

• Base s-ops:

• tokens([a, b, c]) = [a, b, c]

• indices([a, b, c]) = [0, 1, 2]

• 0([a, b, c]) = [0, 0, 0]

• (all other constants)

• Elementwise operations:

• (indices+1)([a, b, c]) = [1, 2, 3]

• (tokens==“b”)([a, b, c]) = [False, True, False]

• (3 if tokens==“b” else 0)([a, b, c]) = [0, 3, 0]

• (all other basic char/num/bool operations)

• Select-Aggregate operations:

• select(indices, indices+1, ==)([a, b, c])= (mark as s)

• aggregate(s, tokens, “!”)([a, b, c]) = [b, c, !]

•

Layer 1

Feed Forward

[1, 2, 3, 4, 5]

33

Follow along:

github.com/tech-srl/RASP

1. clone
2. set up:

1. macOS, linux: ./install.sh

2. windows: follow “windows instructions.txt”

3. run:

1. macOS, linux: ./rasp.sh

2. windows: python3 RASP_support/REPL.py

http://github.com/tech-srl/RASP

RASP s-ops and operations Transformer

[h, e, l, l, o]

embed
[h, e, l, l, o]

[0, 1, 2, 3, 4]

• Base s-ops:

• tokens([a, b, c]) = [a, b, c]

• indices([a, b, c]) = [0, 1, 2]

• 0([a, b, c]) = [0, 0, 0]

• (all other constants)

• Elementwise operations:

• (indices+1)([a, b, c]) = [1, 2, 3]

• (tokens==“b”)([a, b, c]) = [False, True, False]

• (3 if tokens==“b” else 0)([a, b, c]) = [0, 3, 0]

• (all other basic char/num/bool operations)

• Select-Aggregate operations:

• select(indices, indices+1, ==)([a, b, c])= (mark as s)

• aggregate(s, tokens, “!”)([a, b, c]) = [b, c, !]

•

Layer 1

Feed Forward

[1, 2, 3, 4, 5]

34

Follow along:

github.com/tech-srl/RASP

1. clone
2. set up:

1. macOS, linux: ./install.sh

2. windows: follow “windows instructions.txt”

3. run:

1. macOS, linux: ./rasp.sh

2. windows: python3 RASP_support/REPL.py

Multilayer feedforward networks
are universal approximators

(Hornik et al, 1989)

http://github.com/tech-srl/RASP

RASP s-ops and operations Transformer

[h, e, l, l, o]

embed
[h, e, l, l, o]

[0, 1, 2, 3, 4]

• Base s-ops:

• tokens([a, b, c]) = [a, b, c]

• indices([a, b, c]) = [0, 1, 2]

• 0([a, b, c]) = [0, 0, 0]

• (all other constants)

• Elementwise operations:

• (indices+1)([a, b, c]) = [1, 2, 3]

• (tokens==“b”)([a, b, c]) = [False, True, False]

• (3 if tokens==“b” else 0)([a, b, c]) = [0, 3, 0]

• (all other basic char/num/bool operations)

• Select-Aggregate operations:

• select(indices, indices+1, ==)([a, b, c])= (mark as s)

• aggregate(s, tokens, “!”)([a, b, c]) = [b, c, !]

•

Layer 1

Feed Forward

[1, 2, 3, 4, 5]

35

Follow along:

github.com/tech-srl/RASP

1. clone
2. set up:

1. macOS, linux: ./install.sh

2. windows: follow “windows instructions.txt”

3. run:

1. macOS, linux: ./rasp.sh

2. windows: python3 RASP_support/REPL.py

http://github.com/tech-srl/RASP

RASP s-ops and operations Transformer

[h, e, l, l, o]

embed
[h, e, l, l, o]

[0, 1, 2, 3, 4]

• Base s-ops:

• tokens([a, b, c]) = [a, b, c]

• indices([a, b, c]) = [0, 1, 2]

• 0([a, b, c]) = [0, 0, 0]

• (all other constants)

• Elementwise operations:

• (indices+1)([a, b, c]) = [1, 2, 3]

• (tokens==“b”)([a, b, c]) = [False, True, False]

• (3 if tokens==“b” else 0)([a, b, c]) = [0, 3, 0]

• (all other basic char/num/bool operations)

• Select-Aggregate operations:

• select(indices, indices+1, ==)([a, b, c])= (mark as s)

• aggregate(s, tokens, “!”)([a, b, c]) = [b, c, !]

•

Layer 1

Feed Forward

[1, 2, 3, 4, 5]

Attention(s)

36

Follow along:

github.com/tech-srl/RASP

1. clone
2. set up:

1. macOS, linux: ./install.sh

2. windows: follow “windows instructions.txt”

3. run:

1. macOS, linux: ./rasp.sh

2. windows: python3 RASP_support/REPL.py

http://github.com/tech-srl/RASP

RASP s-ops and operations Transformer

[h, e, l, l, o]

embed
[h, e, l, l, o]

[0, 1, 2, 3, 4]

• Base s-ops:

• tokens([a, b, c]) = [a, b, c]

• indices([a, b, c]) = [0, 1, 2]

• 0([a, b, c]) = [0, 0, 0]

• (all other constants)

• Elementwise operations:

• (indices+1)([a, b, c]) = [1, 2, 3]

• (tokens==“b”)([a, b, c]) = [False, True, False]

• (3 if tokens==“b” else 0)([a, b, c]) = [0, 3, 0]

• (all other basic char/num/bool operations)

• Select-Aggregate operations:

• select(indices, indices+1, ==)([a, b, c])= (mark as s)

• aggregate(s, tokens, “!”)([a, b, c]) = [b, c, !]

•

Layer 1

Feed Forward

[1, 2, 3, 4, 5]

Attention(s)

37

Follow along:

github.com/tech-srl/RASP

1. clone
2. set up:

1. macOS, linux: ./install.sh

2. windows: follow “windows instructions.txt”

3. run:

1. macOS, linux: ./rasp.sh

2. windows: python3 RASP_support/REPL.py

http://github.com/tech-srl/RASP

RASP s-ops and operations Transformer

[h, e, l, l, o]

embed
[h, e, l, l, o]

[0, 1, 2, 3, 4]

• Base s-ops:

• tokens([a, b, c]) = [a, b, c]

• indices([a, b, c]) = [0, 1, 2]

• 0([a, b, c]) = [0, 0, 0]

• (all other constants)

• Elementwise operations:

• (indices+1)([a, b, c]) = [1, 2, 3]

• (tokens==“b”)([a, b, c]) = [False, True, False]

• (3 if tokens==“b” else 0)([a, b, c]) = [0, 3, 0]

• (all other basic char/num/bool operations)

• Select-Aggregate operations:

• select(indices, indices+1, ==)([a, b, c])= (mark as s)

• aggregate(s, tokens, “!”)([a, b, c]) = [b, c, !]

•

Layer 1

Feed Forward

[1, 2, 3, 4, 5]

Attention(s)

38

[e, l, l, o, §]

Follow along:

github.com/tech-srl/RASP

1. clone
2. set up:

1. macOS, linux: ./install.sh

2. windows: follow “windows instructions.txt”

3. run:

1. macOS, linux: ./rasp.sh

2. windows: python3 RASP_support/REPL.py

http://github.com/tech-srl/RASP

Background - Self Attention (Single Head)
input

 x1

 x2

 x3

dx

Q

K

input

 x1

 x2

 x3

dx

dk

dk

 q1

 q2

 q3

 k1

 k2

 k3

Background - Self Attention (Single Head)

dv

V

 v1

 v2

 v3

Q

K

input

 x1

 x2

 x3

dx

dk

dk

 q1

 q2

 q3

 k1

 k2

 k3

Background - Self Attention (Single Head)

dv

V

 v1

 v2

 v3

Q

K

input

 x1

 x2

 x3

dx

dk

dk

 q1

 q2

 q3

 k1

 k2

 k3

Background - Self Attention (Single Head)

dv

V

 v1

 v2

 v3

Q

K

input

 x1

 x2

 x3

dx

dk

dk

 q1

 q2

 q3

 k1

 k2

 k3

q1 ⋅ k1

Background - Self Attention (Single Head)
scores

dv

V

 v1

 v2

 v3

Q

K

input

 x1

 x2

 x3

dx

dk

dk

 q1

 q2

 q3

 k1

 k2

 k3

q1 ⋅ k1 q1 ⋅ k2

Background - Self Attention (Single Head)
scores

dv

V

 v1

 v2

 v3

Q

K

input

 x1

 x2

 x3

dx

dk

dk

 q1

 q2

 q3

 k1

 k2

 k3

scores

q1 ⋅ k1 q1 ⋅ k2 q1 ⋅ k3

Background - Self Attention (Single Head)

dv

V

 v1

 v2

 v3

Q

K

input

 x1

 x2

 x3

dx

dk

dk

 k1

 k2

 k3

normalise (i.e.)× 1/ dk

softmax

scores

 q1

 q2

 q3

w1,1 w1,2 w1,3

weights

q1 ⋅ k1 q1 ⋅ k2 q1 ⋅ k3

Background - Self Attention (Single Head)

dv

V

 v1

 v2

 v3

Q

K

V

input

 x1

 x2

 x3

dx

dk

dk

dv

 k1

 k2

 k3

q1 ⋅ k1 q1 ⋅ k2 q1 ⋅ k3

w1,1 w1,2 w1,3

normalise (i.e.)× 1/ dk

softmax

scores

weights

 q1

 q2

 q3

Background - Self Attention (Single Head)

 v1

 v2

 v3

Q

K

V

input

 x1

 x2

 x3

dx

dk

dk

dv

 k1

 k2

 k3

q1 ⋅ k1 q1 ⋅ k2 q1 ⋅ k3

w1,1 w1,2 w1,3

 v1

 v2

 v3

normalise (i.e.)× 1/ dk

softmax

scores

weights

 q1

 q2

 q3

Background - Self Attention (Single Head)

 out1
dv

Q

K

V

input

 x1

 x2

 x3

dx

dk

dk

dv

 k1

 k2

 k3

q2 ⋅ k1 q2 ⋅ k2 q2 ⋅ k3

w2,1 w2,2 w2,3

 v1

 v2

 v3

normalise (i.e.)× 1/ dk

softmax

scores

weights

 q1

 q2

 q3

Background - Self Attention (Single Head)

 out2

 out1

dv

Q

K

V

input

 x1

 x2

 x3

dx

dk

dk

dv

 k1

 k2

 k3

q3 ⋅ k1 q3 ⋅ k2 q3 ⋅ k3

w3,1 w3,2 w3,3

 v1

 v2

 v3

normalise (i.e.)× 1/ dk

softmax

scores

weights

 q1

 q2

 q3

Background - Self Attention (Single Head)

 out3

 out2

 out1

dv

Q

K

V

input

 x1

 x2

 x3

dx

dk

dk

dv

 k1

 k2

 k3

q3 ⋅ k1 q3 ⋅ k2 q3 ⋅ k3

w3,1 w3,2 w3,3

 v1

 v2

 v3

normalise (i.e.)× 1/ dk

softmax

scores

weights

 q1

 q2

 q3

 out3

 out2

 out1

dv

Attention Head

Background - Self Attention (Single Head)

So, how do we present an
attention head?

52

Q

K

V

input

 x1

 x2

 x3

dx

dk

dk

 k1

 k2

 k3

q3 ⋅ k1 q3 ⋅ k2 q3 ⋅ k3

w3,1 w3,2 w3,3

 v1

 v2

 v3

normalise (i.e.)× 1/ dk

softmax

scores

weights

 q1

 q2

 q3

 out3

 out2

 out1

dx

Attention Head

Self Attention (Single Head)

dx

Q

K

V

input

 x1

 x2

 x3

dx

dk

dk

 k1

 k2

 k3

q3 ⋅ k1 q3 ⋅ k2 q3 ⋅ k3

w3,1 w3,2 w3,3

 v1

 v2

 v3

normalise (i.e.)× 1/ dk

softmax

scores

weights

 q1

 q2

 q3

 out3

 out2

 out1

dx

Attention Head

dx

Pairwise!

Self Attention (Single Head)

Q

K

V

input

 x1

 x2

 x3

dx

dk

dk

 k1

 k2

 k3

q3 ⋅ k1 q3 ⋅ k2 q3 ⋅ k3

w3,1 w3,2 w3,3

 v1

 v2

 v3

normalise (i.e.)× 1/ dk

softmax

scores

weights

 q1

 q2

 q3

 out3

 out2

 out1

dx

Attention Head

dx

Self Attention (Single Head)

Q

K

V

input

 x1

 x2

 x3

dx

dk

dk

 k1

 k2

 k3

q3 ⋅ k1 q3 ⋅ k2 q3 ⋅ k3

w3,1 w3,2 w3,3

 v1

 v2

 v3

normalise (i.e.)× 1/ dk

softmax

scores

weights

 q1

 q2

 q3

 out3

 out2

 out1

dx

Attention Head

dx

Single Head: Scoring Selecting↔

Pairwise!

sel = select([2,0,0],[0,1,2],==)

 2 0 0
0 F T T
1 F F F
2 T F F

Single Head: Scoring Selecting↔
Decision: RASP abstracts to binary

select/don’t select decisions

* This is not RASP syntax -
RASP composes functions.

Will see soon

sel = select([2,0,0],[0,1,2],==)

 2 0 0
0 F T T
1 F F F
2 T F F

Single Head: Scoring Selecting↔
Decision: RASP abstracts to binary

select/don’t select decisions

* This is not RASP syntax -
RASP composes functions.

Will see soon

sel = select([2,0,0],[0,1,2],==)

 2 0 0
0 F T T
1 F F F
2 T F F

Single Head: Scoring Selecting↔
Decision: RASP abstracts to binary

select/don’t select decisions

* This is not RASP syntax -
RASP composes functions.

Will see soon

sel = select([2,0,0],[0,1,2],==)

 2 0 0
0 F T T
1 F F F
2 T F F

Single Head: Scoring Selecting↔
Decision: RASP abstracts to binary

select/don’t select decisions

* This is not RASP syntax -
RASP composes functions.

Will see soon

sel = select([2,0,0],[0,1,2],==)

 2 0 0
0 F T T
1 F F F
2 T F F

Single Head: Scoring Selecting↔
Decision: RASP abstracts to binary

select/don’t select decisions

* This is not RASP syntax -
RASP composes functions.

Will see soon

sel = select([2,0,0],[0,1,2],==)

 2 0 0
0 F T T
1 F F F
2 T F F

Single Head: Scoring Selecting↔
Decision: RASP abstracts to binary

select/don’t select decisions

* This is not RASP syntax -
RASP composes functions.

Will see soon

sel = select([2,0,0],[0,1,2],==)

 2 0 0
0 F T T
1 F F F
2 T F F

Single Head: Scoring Selecting↔
Decision: RASP abstracts to binary

select/don’t select decisions

* This is not RASP syntax -
RASP composes functions.

Will see soon

sel = select([2,0,0],[0,1,2],==)

 2 0 0
0 F T T
1 F F F
2 T F F

Single Head: Scoring Selecting↔

sel2 = select([2,0,0],[0,1,2],>=)

 2 0 0
0 T T T
1 T F F
2 T F F

Another example:

Decision: RASP abstracts to binary

select/don’t select decisions

* This is not RASP syntax -
RASP composes functions.

Will see soon

Q

K

V

input

 x1

 x2

 x3

dx

dk

dk

 k1

 k2

 k3

q3 ⋅ k1 q3 ⋅ k2 q3 ⋅ k3

w3,1 w3,2 w3,3

 v1

 v2

 v3

normalise (i.e.)× 1/ dk

softmax

scores

weights

 q1

 q2

 q3

 out3

 out2

 out1

dx

Attention Head

dx

Single Head: Weighted Average Aggregation↔

Single Head: Weighted Average Aggregation↔
new=aggregate(sel, [1,2,4])

 . ….. 1 2 4
 F T T 1 2 4 => 3
 F F F 1 2 4 => 0 => [3,0,1]
 T F F 1 2 4 => 1

* This is not RASP syntax -
RASP composes functions.

Will see soon

Single Head: Weighted Average Aggregation↔
new=aggregate(sel, [1,2,4])

 . ….. 1 2 4
 F T T 1 2 4 => 3
 F F F 1 2 4 => 0 => [3,0,1]
 T F F 1 2 4 => 1

* This is not RASP syntax -
RASP composes functions.

Will see soon

Single Head: Weighted Average Aggregation↔
new=aggregate(sel, [1,2,4])

 . ….. 1 2 4
 F T T 1 2 4 => 3
 F F F 1 2 4 => 0 => [3,0,1]
 T F F 1 2 4 => 1

* This is not RASP syntax -
RASP composes functions.

Will see soon

Single Head: Weighted Average Aggregation↔
new=aggregate(sel, [1,2,4])

 . ….. 1 2 4
 F T T 1 2 4 => 3
 F F F 1 2 4 => 0 => [3,0,1]
 T F F 1 2 4 => 1

* This is not RASP syntax -
RASP composes functions.

Will see soon

Single Head: Weighted Average Aggregation↔
new=aggregate(sel, [1,2,4])

 . ….. 1 2 4
 F T T 1 2 4 => 3
 F F F 1 2 4 => 0 => [3,0,1]
 T F F 1 2 4 => 1

reverse=aggregate(flip, [A,B,C])

 . ….. A B C
 F F T A B C => C
 F T F A B C => B => [C,B,A]
 T F F A B C => A

Symbolic language + no averaging when only
one position selected allows (for example):

* This is not RASP syntax -
RASP composes functions.

Will see soon

RASP s-ops and operations Transformer

[h, e, l, l, o]

embed
[h, e, l, l, o]

[0, 1, 2, 3, 4]

Layer 1

Feed Forward

[1, 2, 3, 4, 5]

Attention(s)

[e, l, l, o, §]

• Base s-ops:

• tokens([a, b, c]) = [a, b, c]

• indices([a, b, c]) = [0, 1, 2]

• 0([a, b, c]) = [0, 0, 0]

• (all other constants)

• Elementwise operations:

• (indices+1)([a, b, c]) = [1, 2, 3]

• (tokens==“b”)([a, b, c]) = [False, True, False]

• (3 if tokens==“b” else 0)([a, b, c]) = [0, 3, 0]

• (all other basic char/num/bool operations)

• Select-Aggregate operations:

• select(indices, indices+1, ==)([a, b, c])= (mark as s)

• aggregate(s, tokens, “!”)([a, b, c]) = [b, c, !]

• Extra: Selector combinations:

• (select(indices, indices+1, ==) or select(indices, 1, <))([a, b, c]) =

71

Follow along:

github.com/tech-srl/RASP

1. clone
2. set up:

1. macOS, linux: ./install.sh

2. windows: follow “windows instructions.txt”

3. run:

1. macOS, linux: ./rasp.sh

2. windows: python3 RASP_support/REPL.py

http://github.com/tech-srl/RASP

RASP s-ops and operations Transformer

[h, e, l, l, o]

embed
[h, e, l, l, o]

[0, 1, 2, 3, 4]

Layer 1

Feed Forward

[1, 2, 3, 4, 5]

Attention(s)

[e, l, l, o, §]

• Base s-ops:

• tokens([a, b, c]) = [a, b, c]

• indices([a, b, c]) = [0, 1, 2]

• 0([a, b, c]) = [0, 0, 0]

• (all other constants)

• Elementwise operations:

• (indices+1)([a, b, c]) = [1, 2, 3]

• (tokens==“b”)([a, b, c]) = [False, True, False]

• (3 if tokens==“b” else 0)([a, b, c]) = [0, 3, 0]

• (all other basic char/num/bool operations)

• Select-Aggregate operations:

• select(indices, indices+1, ==)([a, b, c])= (mark as s)

• aggregate(s, tokens, “!”)([a, b, c]) = [b, c, !]

• Extra: Selector combinations:

• (select(indices, indices+1, ==) or select(indices, 1, <))([a, b, c]) =

0,1,0
0,0,1
0,0,0

72

Follow along:

github.com/tech-srl/RASP

1. clone
2. set up:

1. macOS, linux: ./install.sh

2. windows: follow “windows instructions.txt”

3. run:

1. macOS, linux: ./rasp.sh

2. windows: python3 RASP_support/REPL.py

http://github.com/tech-srl/RASP

RASP s-ops and operations Transformer

[h, e, l, l, o]

embed
[h, e, l, l, o]

[0, 1, 2, 3, 4]

Layer 1

Feed Forward

[1, 2, 3, 4, 5]

Attention(s)

[e, l, l, o, §]

• Base s-ops:

• tokens([a, b, c]) = [a, b, c]

• indices([a, b, c]) = [0, 1, 2]

• 0([a, b, c]) = [0, 0, 0]

• (all other constants)

• Elementwise operations:

• (indices+1)([a, b, c]) = [1, 2, 3]

• (tokens==“b”)([a, b, c]) = [False, True, False]

• (3 if tokens==“b” else 0)([a, b, c]) = [0, 3, 0]

• (all other basic char/num/bool operations)

• Select-Aggregate operations:

• select(indices, indices+1, ==)([a, b, c])= (mark as s)

• aggregate(s, tokens, “!”)([a, b, c]) = [b, c, !]

• Extra: Selector combinations:

• (select(indices, indices+1, ==) or select(indices, 1, <))([a, b, c]) =

0,1,0
0,0,1
0,0,0

1,1,0
1,0,1
1,0,0

73

0,1,0
0,0,1
0,0,0

1,0,0
1,0,0
1,0,0

Follow along:

github.com/tech-srl/RASP

1. clone
2. set up:

1. macOS, linux: ./install.sh

2. windows: follow “windows instructions.txt”

3. run:

1. macOS, linux: ./rasp.sh

2. windows: python3 RASP_support/REPL.py

http://github.com/tech-srl/RASP

RASP s-ops and operations Transformer

[h, e, l, l, o]

embed
[h, e, l, l, o]

[0, 1, 2, 3, 4]

Layer 1

Feed Forward

[1, 2, 3, 4, 5]

Attention(s)

[e, l, l, o, §]

• Base s-ops:

• tokens([a, b, c]) = [a, b, c]

• indices([a, b, c]) = [0, 1, 2]

• 0([a, b, c]) = [0, 0, 0]

• (all other constants)

• Elementwise operations:

• (indices+1)([a, b, c]) = [1, 2, 3]

• (tokens==“b”)([a, b, c]) = [False, True, False]

• (3 if tokens==“b” else 0)([a, b, c]) = [0, 3, 0]

• (all other basic char/num/bool operations)

• Select-Aggregate operations:

• select(indices, indices+1, ==)([a, b, c])= (mark as s)

• aggregate(s, tokens, “!”)([a, b, c]) = [b, c, !]

• Extra: Selector combinations:

• (select(indices, indices+1, ==) or select(indices, 1, <))([a, b, c]) =

0,1,0
0,0,1
0,0,0

1,1,0
1,0,1
1,0,00,1,0

0,0,1
0,0,0

1,0,0
1,0,0
1,0,0 can also be and or not

74

Follow along:

github.com/tech-srl/RASP

1. clone
2. set up:

1. macOS, linux: ./install.sh

2. windows: follow “windows instructions.txt”

3. run:

1. macOS, linux: ./rasp.sh

2. windows: python3 RASP_support/REPL.py

http://github.com/tech-srl/RASP

RASP s-ops and operations Transformer

…

[h, e, l, l, o]

embed
[h, e, l, l, o]

[0, 1, 2, 3, 4]

Layer 1
Layer 2

Layer L
de-embed

Feed Forward

[1, 2, 3, 4, 5]

Attention(s)

[e, l, l, o, §]

• Base s-ops:

• tokens([a, b, c]) = [a, b, c]

• indices([a, b, c]) = [0, 1, 2]

• 0([a, b, c]) = [0, 0, 0]

• (all other constants)

• Elementwise operations:

• (indices+1)([a, b, c]) = [1, 2, 3]

• (tokens==“b”)([a, b, c]) = [False, True, False]

• (3 if tokens==“b” else 0)([a, b, c]) = [0, 3, 0]

• (all other basic char/num/bool operations)

• Select-Aggregate operations:

• select(indices, indices+1, ==)([a, b, c])= (mark as s)

• aggregate(s, tokens, “!”)([a, b, c]) = [b, c, !]

• Extra: Selector combinations:

• (select(indices, indices+1, ==) or select(indices, 1, <))([a, b, c]) =

0,1,0
0,0,1
0,0,0

1,1,0
1,0,1
1,0,00,1,0

0,0,1
0,0,0

1,0,0
1,0,0
1,0,0 can also be and or not

75

Follow along:

github.com/tech-srl/RASP

1. clone
2. set up:

1. macOS, linux: ./install.sh

2. windows: follow “windows instructions.txt”

3. run:

1. macOS, linux: ./rasp.sh

2. windows: python3 RASP_support/REPL.py

[a, b, c, d, e]

http://github.com/tech-srl/RASP

Small RASP exercises

76

Follow along:

github.com/tech-srl/RASP

1. clone
2. set up:

1. macOS, linux: ./install.sh

2. windows: follow “windows instructions.txt”

3. run:

1. macOS, linux: ./rasp.sh

2. windows: python3 RASP_support/REPL.py

http://github.com/tech-srl/RASP

Small RASP exercises

Quick prep

77

Follow along:

github.com/tech-srl/RASP

1. clone
2. set up:

1. macOS, linux: ./install.sh

2. windows: follow “windows instructions.txt”

3. run:

1. macOS, linux: ./rasp.sh

2. windows: python3 RASP_support/REPL.py

http://github.com/tech-srl/RASP

Small RASP exercises
1. Mark “a”’s

Target: set “a” tokens as “!”, leave others unchanged

78

Follow along:

github.com/tech-srl/RASP

1. clone
2. set up:

1. macOS, linux: ./install.sh

2. windows: follow “windows instructions.txt”

3. run:

1. macOS, linux: ./rasp.sh

2. windows: python3 RASP_support/REPL.py

http://github.com/tech-srl/RASP

Target: set “a” tokens as “!”, leave others unchanged

Solution: comparison + ternary operator

Small RASP exercises
1. Mark “a”’s

79

Follow along:

github.com/tech-srl/RASP

1. clone
2. set up:

1. macOS, linux: ./install.sh

2. windows: follow “windows instructions.txt”

3. run:

1. macOS, linux: ./rasp.sh

2. windows: python3 RASP_support/REPL.py

http://github.com/tech-srl/RASP

Target: set “a” tokens as “!”, leave others unchanged

Solution: comparison + ternary operator

Small RASP exercises
1. Mark “a”’s

80

Follow along:

github.com/tech-srl/RASP

1. clone
2. set up:

1. macOS, linux: ./install.sh

2. windows: follow “windows instructions.txt”

3. run:

1. macOS, linux: ./rasp.sh

2. windows: python3 RASP_support/REPL.py

http://github.com/tech-srl/RASP

Target: set “a” tokens as “!”, leave others unchanged

Solution: comparison + ternary operator

Small RASP exercises
1. Mark “a”’s

81

Follow along:

github.com/tech-srl/RASP

1. clone
2. set up:

1. macOS, linux: ./install.sh

2. windows: follow “windows instructions.txt”

3. run:

1. macOS, linux: ./rasp.sh

2. windows: python3 RASP_support/REPL.py

http://github.com/tech-srl/RASP

Target: set “a” tokens as “!”, leave others unchanged

Solution: comparison + ternary operator

Small RASP exercises
1. Mark “a”’s

82

Follow along:

github.com/tech-srl/RASP

1. clone
2. set up:

1. macOS, linux: ./install.sh

2. windows: follow “windows instructions.txt”

3. run:

1. macOS, linux: ./rasp.sh

2. windows: python3 RASP_support/REPL.py

http://github.com/tech-srl/RASP

Target: set “a” tokens as “!”, leave others unchanged

Solution: comparison + ternary operator

Small RASP exercises
1. Mark “a”’s

83

Follow along:

github.com/tech-srl/RASP

1. clone
2. set up:

1. macOS, linux: ./install.sh

2. windows: follow “windows instructions.txt”

3. run:

1. macOS, linux: ./rasp.sh

2. windows: python3 RASP_support/REPL.py

http://github.com/tech-srl/RASP

2. Repeat first token

Target: output first token at each position, e.g. “abc” “aaa”
↦

Small RASP exercises

84

Follow along:

github.com/tech-srl/RASP

1. clone
2. set up:

1. macOS, linux: ./install.sh

2. windows: follow “windows instructions.txt”

3. run:

1. macOS, linux: ./rasp.sh

2. windows: python3 RASP_support/REPL.py

http://github.com/tech-srl/RASP

2. Repeat first token

Target: output first token at each position, e.g. “abc” “aaa”

Solution: (1) have all tokens focus on first position, (2) copy it

↦

Small RASP exercises

85

Follow along:

github.com/tech-srl/RASP

1. clone
2. set up:

1. macOS, linux: ./install.sh

2. windows: follow “windows instructions.txt”

3. run:

1. macOS, linux: ./rasp.sh

2. windows: python3 RASP_support/REPL.py

http://github.com/tech-srl/RASP

2. Repeat first token

Target: output first token at each position, e.g. “abc” “aaa”

Solution: (1) have all tokens focus on first position, (2) copy it

↦

Small RASP exercises

86

Follow along:

github.com/tech-srl/RASP

1. clone
2. set up:

1. macOS, linux: ./install.sh

2. windows: follow “windows instructions.txt”

3. run:

1. macOS, linux: ./rasp.sh

2. windows: python3 RASP_support/REPL.py

http://github.com/tech-srl/RASP

2. Repeat first token

Target: output first token at each position, e.g. “abc” “aaa”

Solution: (1) have all tokens focus on first position, (2) copy it

↦

Small RASP exercises

87

Follow along:

github.com/tech-srl/RASP

1. clone
2. set up:

1. macOS, linux: ./install.sh

2. windows: follow “windows instructions.txt”

3. run:

1. macOS, linux: ./rasp.sh

2. windows: python3 RASP_support/REPL.py

http://github.com/tech-srl/RASP

3. Mark first instances
Small RASP exercises

Target: mark for each position whether it shows new token, e.g. “aba” [T, T, F]
↦

88

Follow along:

github.com/tech-srl/RASP

1. clone
2. set up:

1. macOS, linux: ./install.sh

2. windows: follow “windows instructions.txt”

3. run:

1. macOS, linux: ./rasp.sh

2. windows: python3 RASP_support/REPL.py

http://github.com/tech-srl/RASP

3. Mark first instances
Small RASP exercises

Target: mark for each position whether it shows new token, e.g. “aba” [T, T, F]

Solution: (1) seek previous positions with same token, (2) aggregate their
positions, (3) report whether legal

↦

89

Follow along:

github.com/tech-srl/RASP

1. clone
2. set up:

1. macOS, linux: ./install.sh

2. windows: follow “windows instructions.txt”

3. run:

1. macOS, linux: ./rasp.sh

2. windows: python3 RASP_support/REPL.py

http://github.com/tech-srl/RASP

3. Mark first instances
Small RASP exercises

Target: mark for each position whether it shows new token, e.g. “aba” [T, T, F]

Solution: (1) seek previous positions with same token, (2) aggregate their
positions, (3) report whether legal

↦

90

Follow along:

github.com/tech-srl/RASP

1. clone
2. set up:

1. macOS, linux: ./install.sh

2. windows: follow “windows instructions.txt”

3. run:

1. macOS, linux: ./rasp.sh

2. windows: python3 RASP_support/REPL.py

http://github.com/tech-srl/RASP

3. Mark first instances
Small RASP exercises

Target: mark for each position whether it shows new token, e.g. “aba” [T, T, F]

Solution: (1) seek previous positions with same token, (2) aggregate their
positions, (3) report whether legal

↦

91

Follow along:

github.com/tech-srl/RASP

1. clone
2. set up:

1. macOS, linux: ./install.sh

2. windows: follow “windows instructions.txt”

3. run:

1. macOS, linux: ./rasp.sh

2. windows: python3 RASP_support/REPL.py

http://github.com/tech-srl/RASP

3. Mark first instances
Small RASP exercises

Target: mark for each position whether it shows new token, e.g. “aba” [T, T, F]

Solution: (1) seek previous positions with same token, (2) aggregate their
positions, (3) report whether legal

↦

92

Follow along:

github.com/tech-srl/RASP

1. clone
2. set up:

1. macOS, linux: ./install.sh

2. windows: follow “windows instructions.txt”

3. run:

1. macOS, linux: ./rasp.sh

2. windows: python3 RASP_support/REPL.py

http://github.com/tech-srl/RASP

4. Get position of first “a”
Small RASP exercises

Target: output first “a” position at each position, e.g. “abc” [0,0,0]
↦

93

Follow along:

github.com/tech-srl/RASP

1. clone
2. set up:

1. macOS, linux: ./install.sh

2. windows: follow “windows instructions.txt”

3. run:

1. macOS, linux: ./rasp.sh

2. windows: python3 RASP_support/REPL.py

http://github.com/tech-srl/RASP

4. Get position of first “a”
Small RASP exercises

Target: output first “a” position at each position, e.g. “abc” [0,0,0]

Solution: (1) mark first token positions, (2) focus on first “a” position, (3)
aggregate its position

↦

94

Follow along:

github.com/tech-srl/RASP

1. clone
2. set up:

1. macOS, linux: ./install.sh

2. windows: follow “windows instructions.txt”

3. run:

1. macOS, linux: ./rasp.sh

2. windows: python3 RASP_support/REPL.py

http://github.com/tech-srl/RASP

4. Get position of first “a”
Small RASP exercises

Target: output first “a” position at each position, e.g. “abc” [0,0,0]

Solution: (1) mark first token positions, (2) focus on first “a” position, (3)
aggregate its position

↦

95

Follow along:

github.com/tech-srl/RASP

1. clone
2. set up:

1. macOS, linux: ./install.sh

2. windows: follow “windows instructions.txt”

3. run:

1. macOS, linux: ./rasp.sh

2. windows: python3 RASP_support/REPL.py

http://github.com/tech-srl/RASP

4. Get position of first “a”
Small RASP exercises

Target: output first “a” position at each position, e.g. “abc” [0,0,0]

Solution: (1) mark first token positions, (2) focus on first “a” position, (3)
aggregate its position

↦

96

Follow along:

github.com/tech-srl/RASP

1. clone
2. set up:

1. macOS, linux: ./install.sh

2. windows: follow “windows instructions.txt”

3. run:

1. macOS, linux: ./rasp.sh

2. windows: python3 RASP_support/REPL.py

http://github.com/tech-srl/RASP

4. Get position of first “a”
Small RASP exercises

Target: output first “a” position at each position, e.g. “abc” [0,0,0]

Solution: (1) mark first token positions, (2) focus on first “a” position, (3)
aggregate its position

↦

97

Follow along:

github.com/tech-srl/RASP

1. clone
2. set up:

1. macOS, linux: ./install.sh

2. windows: follow “windows instructions.txt”

3. run:

1. macOS, linux: ./rasp.sh

2. windows: python3 RASP_support/REPL.py

http://github.com/tech-srl/RASP

5. Compute length
Small RASP exercises

98

Target: output input length at each position,

e.g. “abc” [3, 3, 3]

Solution (v1):

(1) select all positions without higher

(2) send 1 from all positions

(3) aggregate the 1

(4) … get 1 regardless of length
dddd

attention *averages*, doesn’t sum!

(a) select position with no legal next

(b) aggregate its index

↦

5. Compute length
Small RASP exercises

99

Target: output input length at each position,

e.g. “abc” [3, 3, 3]

Solution (attempt):

(1) select all positions without higher

(2) send 1 from all positions

(3) aggregate the 1

(4) … get 1 regardless of length
dddd

attention *averages*, doesn’t sum!

(a) select position with no legal next

(b) aggregate its index

↦

5. Compute length
Small RASP exercises

100

Target: output input length at each position,

e.g. “abc” [3, 3, 3]

Solution (attempt):

(1) select all positions

(2) send 1 from all positions

(3) aggregate the 1

(4) … get 1 regardless of length
dddd

attention *averages*, doesn’t sum!

(a) select position with no legal next

(b) aggregate its index

↦

5. Compute length
Small RASP exercises

101

Target: output input length at each position,

e.g. “abc” [3, 3, 3]

Solution (attempt):

(1) select all positions without higher

(2) send 1 from all positions

(3) aggregate the 1

(4) … get 1 regardless of length
dddd

attention *averages*, doesn’t sum!

(a) select position with no legal next

(b) aggregate its index

↦

5. Compute length
Small RASP exercises

102

Target: output input length at each position,

e.g. “abc” [3, 3, 3]

Solution (attempt):

(1) select all positions without higher

(2) send 1 from all positions

(3) aggregate the 1

(4) … get 1 regardless of length
dddd

attention *averages*, doesn’t sum!

(a) select position with no legal next

(b) aggregate its index

↦

5. Compute length
Small RASP exercises

103

Target: output input length at each position,

e.g. “abc” [3, 3, 3]

Solution (attempt):

(1) select all positions without higher

(2) send 1 from all positions

(3) aggregate the 1

(4) … get 1 regardless of length
dddd

attention *averages*, doesn’t sum!

(a) select position with no legal next

(b) aggregate its index

↦

5. Compute length
Small RASP exercises

104

Target: output input length at each position,

e.g. “abc” [3, 3, 3]

Solution (attempt):

(1) select all positions without higher

(2) send 1 from all positions

(3) aggregate the 1

(4) … get 1 regardless of length
dddd

attention *averages*, doesn’t sum!

(a) select position with no legal next

(b) aggregate its index

↦

5. Compute length (v1)
Small RASP exercises

Target: output input length at each position,

e.g. “abc” [3, 3, 3]

Solution (v1):

(1) mark position without higher
position

(a) select next position

(b) aggregate its position

(c) mark if no legal next position

(2) get location of that position

(a) select position with no legal next

(b) aggregate its index

↦

105

5. Compute length (v1)
Small RASP exercises

Target: output input length at each position,

e.g. “abc” [3, 3, 3]

Solution (v1):

(1) mark position without higher
position

(a) select next position

(b) aggregate its position

(c) mark if no legal next position

(2) get location of that position

(a) select position with no legal next

(b) aggregate its index

↦

106

5. Compute length (v1)
Small RASP exercises

Target: output input length at each position,

e.g. “abc” [3, 3, 3]

Solution (v1):

(1) mark position without higher
position

(a) select next position

(b) aggregate its position

(c) mark if no legal next position

(2) get location of that position

(a) select position with no legal next

(b) aggregate its index

↦

107

5. Compute length (v1)
Small RASP exercises

Target: output input length at each position,

e.g. “abc” [3, 3, 3]

Solution (v1):

(1) mark position without higher
position:

(a) select next position

(b) aggregate its index

(c) mark if illegal result

(2) get location of that position

(a) select position with no legal next

(b) aggregate its index

↦

108

5. Compute length (v1)
Small RASP exercises

109

Target: output input length at each position,

e.g. “abc” [3, 3, 3]

Solution (v1):

(1) mark position without higher
position:

(a) select next position

(b) aggregate its index

(c) mark if illegal result

(2) get location of that position

(a) select position with no legal next

(b) aggregate its index

↦

5. Compute length (v1)
Small RASP exercises

110

Target: output input length at each position,

e.g. “abc” [3, 3, 3]

Solution (v1):

(1) mark position without higher
position:

(a) select next position

(b) aggregate its index

(c) mark if illegal result

(2) get location of that position

(a) select position with no legal next

(b) aggregate its index

↦

5. Compute length (v1)
Small RASP exercises

111

Target: output input length at each position,

e.g. “abc” [3, 3, 3]

Solution (v1):

(1) mark position without higher
position:

(a) select next position

(b) aggregate its index

(c) mark if illegal result

(2) get location of that position

(a) select position with no legal next

(b) aggregate its index

↦

5. Compute length (v1)
Small RASP exercises

112

Target: output input length at each position,

e.g. “abc” [3, 3, 3]

Solution (v1):

(1) mark position without higher
position:

(a) select next position

(b) aggregate its index

(c) mark if illegal result

(2) get location of that position

(a) select position with no legal next

(b) aggregate its index

↦

5. Compute length (v1)
Small RASP exercises

113

Target: output input length at each position,

e.g. “abc” [3, 3, 3]

Solution (v1):

(1) mark position without higher
position:

(a) select next position

(b) aggregate its index

(c) mark if illegal result

(2) get location of that position:

(a) select highest position

(b) aggregate its index

↦

5. Compute length (v1)
Small RASP exercises

114

Target: output input length at each position,

e.g. “abc” [3, 3, 3]

Solution (v1):

(1) mark position without higher
position:

(a) select next position

(b) aggregate its index

(c) mark if illegal result

(2) get location of that position

(a) select highest position

(b) aggregate its index

↦

5. Compute length (v1)
Small RASP exercises

115

Target: output input length at each position,

e.g. “abc” [3, 3, 3]

Solution (v1):

(1) mark position without higher
position:

(a) select next position

(b) aggregate its index

(c) mark if illegal result

(2) get location of that position

(a) select highest position

(b) aggregate its index

↦

5. Compute length (v1)
Small RASP exercises

116

Target: output input length at each position,

e.g. “abc” [3, 3, 3]

Solution (v1):

(1) mark position without higher
position:

(a) select next position

(b) aggregate its index

(c) mark if illegal result

(2) get location of that position

(a) select highest position

(b) aggregate its index

↦

5. Compute length (v1)
Small RASP exercises

depends on output of

117

Target: output input length at each position,

e.g. “abc” [3, 3, 3]

Solution (v1):

(1) mark position without higher
position:

(a) select next position

(b) aggregate its index

(c) mark if illegal result

(2) get location of that position

(a) select highest position

(b) aggregate its index

↦

5. Compute length (v1)
Small RASP exercises

2 layers!

depends on output of

118

Target: output input length at each position,

e.g. “abc” [3, 3, 3]

Solution (v1):

(1) mark position without higher
position:

(a) select next position

(b) aggregate its index

(c) mark if illegal result

(2) get location of that position

(a) select highest position

(b) aggregate its index

↦

5. Compute length (v1)
Small RASP exercises

119

Target: output input length at each position,

e.g. “abc” [3, 3, 3]

Solution (v1):

(1) mark position without higher
position:

(a) select next position

(b) aggregate its index

(c) mark if illegal result

(2) get location of that position

(a) select highest position

(b) aggregate its index

↦

2 layers

6. Compute length (v2 - one layer)
Small RASP exercises

Target: output input length at
each position,

e.g. “abc” [3, 3, 3]

Solution (v2):

↦

120

6. Compute length (v2 - one layer)
Small RASP exercises

Target: output input length at
each position,

e.g. “abc” [3, 3, 3]

Solution (v2):

(1) mark *all* positions

(2) send 1 from only one
location

(3) invert the average!

↦

121

6. Compute length (v2 - one layer)
Small RASP exercises

Target: output input length at
each position,

e.g. “abc” [3, 3, 3]

Solution (v2):

(1) mark *all* positions

(2) send 1 from only one
location

(3) invert the average!

↦

122

6. Compute length (v2 - one layer)
Small RASP exercises

Target: output input length at
each position,

e.g. “abc” [3, 3, 3]

Solution (v2):

(1) mark *all* positions

(2) send 1 from only one
location

(3) invert the average!

↦

123

6. Compute length (v2 - one layer)
Small RASP exercises

Target: output input length at
each position,

e.g. “abc” [3, 3, 3]

Solution (v2):

(1) mark *all* positions

(2) send 1 from only one
location

(3) invert the average!

↦

124

6. Compute length (v2 - one layer)
Small RASP exercises

Target: output input length at
each position,

e.g. “abc” [3, 3, 3]

Solution (v2):

(1) mark *all* positions

(2) send 1 from only one
location

(3) invert the average!

↦

125

6. Compute length (v2 - one layer)
Small RASP exercises

Target: output input length at
each position,

e.g. “abc” [3, 3, 3]

Solution (v2):

(1) mark *all* positions

(2) send 1 from only one
location

(3) invert the average!

↦

126

Library s-op in RASP (“length”)

7. Reverse
Small RASP exercises

Target: flip input sequence, e.g. “abc” “cba”
↦

127

7. Reverse
Small RASP exercises

Target: flip input sequence, e.g. “abc” “cba”

Solution: (1) compute opposite position, (2) seek it, (3) get its token

↦

128

7. Reverse
Small RASP exercises

Target: flip input sequence, e.g. “abc” “cba”

Solution: (1) compute opposite position, (2) seek it, (3) get its token

↦

129

7. Reverse
Small RASP exercises

Target: flip input sequence, e.g. “abc” “cba”

Solution: (1) compute opposite position, (2) seek it, (3) get its token

↦

130

7. Reverse
Small RASP exercises

Target: flip input sequence, e.g. “abc” “cba”

Solution: (1) compute opposite position, (2) seek it, (3) get its token

↦

131

Reverse - comparison with trained transformer
Small RASP exercises

Test:

Training small transformers on lengths 0-100:

2 layers: 99.6% accuracy after 20 epochs

1 layer: 39.6% accuracy after 50 epochs

Layer 1 (sel_all) Layer 2 (sel_flip)

Bonus: the 2 layer transformer’s attention patterns:

132

8. Count “a”’s
Small RASP exercises

Target: count “a”’s, e.g. “abc” [1, 1, 1]
↦

133

8. Count “a”’s
Small RASP exercises

Target: count “a”’s, e.g. “abc” [1, 1, 1]

Solution: (1) focus on all (2) send 1 from “a”’s and 0 from others, (3) average,
and multiply by length

↦

134

8. Count “a”’s
Small RASP exercises

Target: count “a”’s, e.g. “abc” [1, 1, 1]

Solution: (1) focus on all (2) send 1 from “a”’s and 0 from others, (3) average,
and multiply by length

↦

135

8. Count “a”’s
Small RASP exercises

Target: count “a”’s, e.g. “abc” [1, 1, 1]

Solution: (1) focus on all (2) send 1 from “a”’s and 0 from others, (3) average,
and multiply by length

↦

136

8. Count “a”’s
Small RASP exercises

Target: count “a”’s, e.g. “abc” [1, 1, 1]

Solution: (1) focus on all (2) send 1 from “a”’s and 0 from others, (3) average,
and multiply by length

↦

137

8. Count “a”’s
Small RASP exercises

Target: count “a”’s, e.g. “abc” [1, 1, 1]

Solution: (1) focus on all (2) send 1 from “a”’s and 0 from others, (3) average,
and multiply by length

↦

138

9. In place histogram
Medium RASP exercises

Target: mark each token with its frequency, e.g: [a, b, a] [2, 1, 2]
↦

139

9. In place histogram
Medium RASP exercises

Target: mark each token with its frequency, e.g: [a, b, a] [2, 1, 2]

Solution (v1, like counting “a”’s): (1) look at all tokens, (2) send 1 from token
being counted, 0 from others, … ??? wait… different positions are counting
different tokens. Who sends 1 and who sends 0?

Solution (v2, like length_v2): (1) mark tokens being counted, (2) send 1 from
only one position, … ??? wait… which is the one position?

could mark first instance of each token as the one position, but there’s
something more generalisable…

↦

140

Target: mark each token with its frequency, e.g: [a, b, a] [2, 1, 2]

Solution (v1, like counting “a”’s): (1) look at all tokens, (2) send 1 from token
being counted, 0 from others, … ??? wait… different positions are counting
different tokens. Who sends 1 and who sends 0?

Solution (v2, like length_v2): (1) look at tokens being counted, (2) send 1 from
only one position, … ??? wait… which is the one position?

↦

141

Medium RASP exercises
9. In place histogram

Target: mark each token with its frequency, e.g: [a, b, a] [2, 1, 2]

Solution (v1, like counting “a”’s): (1) look at all tokens, (2) send 1 from token
being counted, 0 from others, … ??? wait… different positions are counting
different tokens. Who sends 1 and who sends 0?

Solution (v2, like length_v2): (1) look at tokens being counted, (2) send 1 from
only one position, … ??? wait… which is the one position?

can mark first instance of each token as the one position ✅

↦

142

Medium RASP exercises
9. In place histogram

Target: mark each token with its frequency, e.g: [a, b, a] [2, 1, 2]

Solution (v1, like counting “a”’s): (1) look at all tokens, (2) send 1 from token
being counted, 0 from others, … ??? wait… different positions are counting
different tokens. Who sends 1 and who sends 0?

Solution (v2, like length_v2): (1) look at tokens being counted, (2) send 1 from
only one position, … ??? wait… which is the one position?

can mark first instance of each token as the one position ✅

but there’s something more generalisable…!

↦

143

Medium RASP exercises
9. In place histogram

Target: mark each token with its frequency, e.g: [a, b, a] [2, 1, 2]

Solution (v1, like counting “a”’s): (1) look at all tokens, (2) send 1 from token
being counted, 0 from others, … ??? wait… different positions are counting
different tokens. Who sends 1 and who sends 0?

Solution (v2, like length_v2): (1) look at tokens being counted, (2) send 1 from
only one position, … ??? wait… which is the one position?

can mark first instance of each token as the one position ✅

but there’s something more generalisable…!

↦

144

Medium RASP exercises
9. In place histogram

Force 0 as the one position, and correct for it after (singular check at pos. 0)

Target: mark each token with its frequency, e.g: [a, b, a] [2, 1, 2]

Solution:

(1a) look at same tokens,

(1b) AND at pos. 0,

(2) send 1 only from 0,

(3) average and invert,

(4) get token at 0,

(5) correct for pos. 0

↦

145

Medium RASP exercises
9. In place histogram

Target: mark each token with its frequency, e.g: [a, b, a] [2, 1, 2]

Solution:

(1a) look at same tokens,

(1b) AND at pos. 0,

(2) send 1 only from 0,

(3) average and invert,

(4) get token at 0,

(5) correct for pos. 0

↦

146

Medium RASP exercises
9. In place histogram

Target: mark each token with its frequency, e.g: [a, b, a] [2, 1, 2]

Solution:

(1a) look at same tokens,

(1b) AND at pos. 0,

(2) send 1 only from 0,

(3) average and invert,

(4) get token at 0,

(5) correct for pos. 0

↦

147

Medium RASP exercises
9. In place histogram

Target: mark each token with its frequency, e.g: [a, b, a] [2, 1, 2]

Solution:

(1a) look at same tokens,

(1b) AND at pos. 0,

(2) send 1 only from 0,

(3) average and invert,

(4) get token at 0,

(5) correct for pos. 0

↦

148

Medium RASP exercises
9. In place histogram

Target: mark each token with its frequency, e.g: [a, b, a] [2, 1, 2]

Solution:

(1a) look at same tokens,

(1b) AND at pos. 0,

(2) send 1 only from 0,

(3) average and invert,

(4) get token at 0,

(5) correct for pos. 0

↦

149

Medium RASP exercises
9. In place histogram

Target: mark each token with its frequency, e.g: [a, b, a] [2, 1, 2]

Solution:

(1a) look at same tokens,

(1b) AND at pos. 0,

(2) send 1 only from 0,

(3) average and invert,

(4) get token at 0,

(5) correct for pos. 0

↦

150

Medium RASP exercises
9. In place histogram

Target: mark each token with its frequency, e.g: [a, b, a] [2, 1, 2]

Solution:

(1a) look at same tokens,

(1b) AND at pos. 0,

(2) send 1 only from 0,

(3) average and invert,

(4) get token at 0,

(5) correct for pos. 0

↦

151

Medium RASP exercises
9. In place histogram

Target: mark each token with its frequency, e.g: [a, b, a] [2, 1, 2]

Solution:

(1a) look at same tokens,

(1b) AND at pos. 0,

(2) send 1 only from 0,

(3) average and invert,

(4) get token at 0,

(5) correct for pos. 0

↦

152

Medium RASP exercises
9. In place histogram

10. Selector width

Target: compute how many positions are chosen in each row of a selector

Solution: generalisation of histogram solution:

(1a) look at same tokens given selector,

(1b) AND at pos. 0,

(2) send 1 only from 0,

(3) average and invert,

(4) get token at 0 get 1 iff selector hits 0,

(5) correct for pos. 0

153

Medium RASP exercises

10. Selector width
Medium RASP exercises

Target: compute how many positions are chosen in each row of a selector

Solution: generalisation of histogram solution:

(1a) look at same tokens given selector,

(1b) AND at pos. 0,

(2) send 1 only from 0,

(3) average and invert,

(4) get token at 0

get 1 iff selector hits 0,

(5) correct for pos. 0154

10. Selector width
Medium RASP exercises

Target: compute how many positions are chosen in each row of a selector

Solution: generalisation of histogram solution:

(1a) look at same tokens given selector,

(1b) AND at pos. 0,

(2) send 1 only from 0,

(3) average and invert,

(4) get token at 0

get 1 iff selector hits 0,

(5) correct for pos. 0155

Library function in RASP

https://github.com/tech-srl/RASP/blob/main/RASP_support/rasplib.rasp

11. Sorting
Medium RASP exercises

Target: sort arbitrary
sequence of values, e.g.
dkhs dhks

Solution:

→

156

11. Sorting
Medium RASP exercises

157

Target: sort arbitrary
sequence of values, e.g.
dkhs dhks

Solution: each token
finds all tokens smaller
than itself, input position
is used as a tie-breaker.
Counting these gives us
that token’s order, i.e.,
its final position in the
sorted sequence

→

11. Sorting
Medium RASP exercises

158

Target: sort arbitrary
sequence of values, e.g.
dkhs dhks

Solution: each token
finds all tokens smaller
than itself, input position
is used as a tie-breaker.
Counting these gives us
that token’s order, i.e.,
its final position in the
sorted sequence

→

11. Sorting
Medium RASP exercises

159

Target: sort arbitrary
sequence of values, e.g.
dkhs dhks

Solution: each token
finds all tokens smaller
than itself, input position
is used as a tie-breaker.
Counting these gives us
that token’s order, i.e.,
its final position in the
sorted sequence

→

11. Sorting
Medium RASP exercises

160

Target: sort arbitrary
sequence of values, e.g.
dkhs dhks

Solution: each token
finds all tokens smaller
than itself, input position
is used as a tie-breaker.
Counting these gives us
that token’s order, i.e.,
its final position in the
sorted sequence

→

11. Sorting
Medium RASP exercises

Target: sort arbitrary
sequence of values, e.g.
dkhs dhks

Solution: each token
finds all tokens smaller
than itself, input position
is used as a tie-breaker.
Counting these gives us
that token’s order, i.e.,
its final position in the
sorted sequence

→

161

11. Sorting
Medium RASP exercises

Target: sort arbitrary
sequence of values, e.g.
dkhs dhks

Solution: each token
finds all tokens smaller
than itself, input position
is used as a tie-breaker.
Counting these gives us
that token’s order, i.e.,
its final position in the
sorted sequence

→

162

What does this mean for
linear transformers?

Multi Hop Reasoning
High level discussion

163

In parameters

Ben’s sister’s husband?

initial processing

memory lookup 1

- Sally’s husband?

memory lookup 2

David

- - David

{(Ben,sister): Sally,

 (Sally, husband): David,

 …}

Redundancy!

{(Ben,sister): Sally,

 (Sally, husband): David,

 …}

Multi Hop Reasoning
High level discussion

164

In parameters

Ben’s sister’s husband?

initial processing

memory lookup 1

- Sally’s husband?

memory lookup 2

David

- - David

{(Ben,sister): Sally,

 (Sally, husband): David,

 …}

Redundancy!

{(Ben,sister): Sally,

 (Sally, husband): David,

 …}

Redundancy observed:
Discovering knowledge-critical

subnetworks in pretrained
language models
Bayazit et al, 2024

“Circuit” observed:

Grokked transformers are implicit
reasoners: a mechanistic journey

to the edge of generalization

Wang et al, 2024

Multi Hop Reasoning
High level discussion

165 another solution (builds up descriptions in place): https://github.com/tech-srl/RASP/blob/main/rover.rasp

In context

Ben’s sister: Sally. Sally’s husband: David. Ben’s sister’s husband?

initial processing

context lookup 1

context lookup 2

David

- Sally’s husband?

- - David

K: (Ben, sister)
V: Sally

Q: (Ben, sister)

Q: (Sally, husband)

K: (Sally, husband)
V: David

Multi Hop Reasoning
High level discussion

166 another solution (builds up descriptions in place): https://github.com/tech-srl/RASP/blob/main/rover.rasp

In context

Ben’s sister: Sally. Sally’s husband: David. Ben’s sister’s husband?

initial processing

context lookup 1

context lookup 2

David

- Sally’s husband?

- - David

K: (Ben, sister)
V: Sally

Q: (Ben, sister)

Q: (Sally, husband)

K: (Sally, husband)
V: David

Lot of detail needed in
the queries and keys…

Makes finding relevant
facts and rules harder?

Benefits of memory over context:

RECKONING: Reasoning through
dynamic knowledge encoding

Chen et al, 2023

End
RASP REPL

 github.com/tech-srl/RASP

(or email me if you can’t get on github)

 Long addition walkthrough:

Thinking Like Transformers
ICLR 2023 Blog Track

 🌟 https://srush.github.io/raspy/ 🌟

RASP itself:

Thinking Like Transformers

ICML 2021

167

Tracr (Partial RASP compiler)

Lindner et al, NeurIPS 2023

Learning Transformer Programs

Friedman et al, NeurIPS 2023

http://github.com/tech-srl/RASP
https://srush.github.io/raspy/

