of Technology

U

. T'hinking Like Transformers
S CORNELL Practical Session

<
Q_é
o)
v <
) =B i
—t— ©
QED A I

N
TECHNION
u Israel Institute
B |

(

| \ ‘
~—>| Add & Norm]
Feed I
Forvaard Follow along:
G

| github.com/tech-srl/RASP

r

Nx | —{(CAdd & Norm)
Multi-Head 1. clone
&Attertion} 2 Set Up:

& _ 1. macOS, linux; ./install.sh
Positional - _ - . _ i}
oo ®_<+ﬁ 2. windows: follow “windows instructions.txt
Input 3. run:
Emb‘}dd'”g 1. macOS, linux: ./rasp.sh
/ Inputs 2. windows: python3 RASP_support/REPL.py

RASP introduced: Thinking like transformers (paper, ICML 2021) Gail Weiss, Yoav Goldberg, Eran Yahav
1 Long addition: Thinking like transformers (blog, ICLR 2023) Alexander Rush, Gail Weiss

http://github.com/tech-srl/RASP

Note - model vs use

Transformer

[a, b, c, d, €]

[h, e, |, 1, 0]

A transformer by itself is a
length preserving function!

To avoid confusion, we’ll briefly describe the non-length-preserving behaviour that you’re used to before we start

Note - model vs use

Transformer Causal Transformer

[a7 b, c, d, e] [f! 9, h! i! j, k] [a, b, c, d, e] [a, b, c, d, f]

= =

h, e, |, 1, O] h, e, |, 1, y] [h, e, |, 1, O] h, e |, 1, vy]

Note - model vs use

Causal/autoregressive transformer in classic generative loop

[a, b, c, d, €]

Transformer

[a, b, c, d, €]

[h, e, |, 1, O]

Prompt

[h, e, |, |, O]

Note - model vs use

Causal/autoregressive transformer in classic generative loop

[a, b, C, d

T

h, e, |, |, O] h, e I |, o0, €]

Prompt K /

Transformer

[a, b, c, d, €]

[h, e, |, |, O]

Note - model vs use

Causal/autoregressive transformer in classic generative loop

[a, b, C, d

T T

h, e, |, |, O] h, e I |, o0, €]

Prompt K /

Transformer

[a, b, c, d, €]

[h, e, |, |, O]

Note - model vs use

Causal/autoregressive transformer in classic generative loop

[a, b, c, d [a, b, c, d,e,(q]

T T

h, e, |, |, O] h, e I |, o0, €]

Prompt K /

Transformer

[a, b, c, d, €]

[h, e, |, |, O]

Note - model vs use

Causal/autoregressive transformer in classic generative loop

[a, b, C, d [a, b, c, d, e, [a, b, c, d, e, q, 2]

T T T

h, e, |, |, O] h, e I |, o0, €] h,e I, |, 0,¢€,d]

pomer S

Transformer

[a, b, c, d, €]

[h, e, |, |, O]

Transformer

[a, b, c, d, €]

[h, e, |, |, O]

Note - model vs use

Causal/autoregressive transformer in classic generative loop

T

[h, e, |, 1, O]

Prompt

T

h, e I |, o0, €]

7

[a,b,c,d [a,b,c,d,e, [a,b,c,d,e,q@\ [a, b, c,d, e q,q]

T

h,e I, |, 0,¢€,d]

7

T

h,e I, |, 0,e€,q,2]

.

10

Transformer

[a, b, c, d, €]

[h, e, |, |, O]

Note - model vs use

Causal/autoregressive transformer in classic generative loop

T

[h, e, |, 1, O]

Prompt

T

h, e I |, o0, €]

7

[a,b,c,d [a,b,c,d,e, [a,b,c,d,e,q@\ [a, b, c,d, e q,q]

T

h,e I, |, 0,¢€,d]

7

T

h,e I, |, 0,e€,q,2]

.

The
generative
loop moves to
non-length
preserving
behaviour

Note - model vs use

Causal/autoregressive transformer in classic generative loop The
generative
[a, b, c, d [a, b, c, d, e, [a,b,c,d, e, g [a, b, c,d, e q,d] loop moves to
non-length
preserving
behaviour
Transformer
@, b,c.d, el T T T T works well
h, e, |, |, O] h, e I |, o0, €] h,e I, |, 0,¢€,d] h,e I, |, 0,e€,q,2]

Prompt K / K / &/

Plain transformer in classic generative loop

a.b, ¢ d [0, p, A, m, 2, Y, 0,2, , w@\ 5,9, Y, P, , Z, W,] Probably
h, e |, 1, O] works well,

maybe even

better - but
very inefficient

(redo entire
T T T computation
h, e |, 1, 0] h, e I |, o0, €] h,e I, |, 0,¢€,d] h,e I, |, 0,e€,q,2] for every

_ /‘ _ /‘ K/ prediction)

Note - model vs use

Causal/autoregressive transformer in classic generative loop

Transformer

[a, b, c, d, €]

T T

h, e, |, |, O] h, e I |, o0, €]

Prompt K /

[a,b,c,d [a,b,c,d,e, [a,b,c,d,e,q@\ [a, b, c,d, e q,q]

T

h,e I, |, 0,¢€,d]

7

T

h,e I, |, 0,e€,q,2]

.

Plain transformer in classic generative loop

2.b,c. d [0, p, A, m, 2, Y,0,2,x, rr@\ 5,6, Y, p, 1, Z, w,
h, e, |, |, O]

T T

h, e |, 1, 0] h, e I |, o0, €]

Prompt K /

12

T

[h,e, I, 1,0,e, q]

7

T

h,e |, 1,0,e,q, 2]

.

We will not focus on the “generative” case, or the causal restriction - just the transformer model itself

[a, b, c, d, €]

Transformer model

Transformer

[h, e, |, 1, 0]

[a, b, c, d, €]

Transformer model

Transformer

[h, e, |, 1, 0]

[a, b, c, d, €]

Transformer model

Transformer

16

Transformer model

[a, b, c, d, €]

Transformer

[h, e, |, 1, 0]

17

Transformer model

[a, b, c, d, €]

Transformer

h, e |, 1, O]

18

Transformer model

[a, b, c, d, €]

Transformer

de-embed

Layer L

h, e |, 1, O]

19

Transformer model

Goal: understand how transformers process input

[a, b, c, d, €]

Transformer

de-embed

Layer L

h, e |, 1, O]

20

Transformer model

Goal: understand how transformers process input

Approach:

Internal embeddings are not meaningless
vectors, they carry meaning. Describe with
symbolic values

Layers are not meaningless manipulations, they
perform meaningful operations on these values.
Describe these operations

— view transformer as executing a short program

[a, b, c, d, €]

Transformer

de-embed

Layer L

h, e |, 1, O]

RASP (Restricted Access Sequence Processing)

[a, b, c, d, €]

e State: Transformer architecture processes input sequences,
with specific operations

 (Goal: describe/understand these operations

e Result: [h, e, 1,1, 0]

 Abstract transformers as class of sequence-to- o
seqguence functions, the “sequence operators” (s-ops) [a, b, c, d, €]

Sequence Operator

[h, e, |, 1, 0]

RASP (Restricted Access Sequence Processing)

[a, b, c, d, €]

e State: Transformer architecture processes input sequences,
with specific operations

 (Goal: describe/understand these operations

e Result: [h, e, 1,1, 0]

 Abstract transformers as class of sequence-to- o
seqguence functions, the “sequence operators” (s-ops) [a, b, c, d, €]

* Define function space inductively with RASP:

Sequence Operator

 Dbase s-ops (program inputs), and

e operations to create new s-ops (program lines) [h,e, |, 1, 0]

23

RASP s-ops and operations

Follow along:
github.com/tech-srl/RASP
1. clone
2. set up:
1. macQOS, linux: ./install.sh
2. windows: follow “windows instructions.txt”

1. macOS, linux: ./rasp.sh
2. windows: python3 RASP_support/REPL.py

Transformer

[h, e, |, 1, 0]

http://github.com/tech-srl/RASP

24

RASP s-ops and operations

Follow along:
github.com/tech-srl/RASP
1. clone
2. set up:
1. macQOS, linux: ./install.sh
2. windows: follow “windows instructions.txt”

1. macOS, linux: ./rasp.sh
2. windows: python3 RASP_support/REPL.py

Transformer

[h, e, |, 1, 0]

http://github.com/tech-srl/RASP

25

RASP s-ops and operations

Follow along:
github.com/tech-srl/RASP
1. clone
2. set up:
1. macQOS, linux: ./install.sh
2. windows: follow “windows instructions.txt”

1. macOS, linux: ./rasp.sh
2. windows: python3 RASP_support/REPL.py

Transformer

http://github.com/tech-srl/RASP

26

RASP s-ops and operations

Follow along:
github.com/tech-srl/RASP
1. clone
2. set up:
1. macQOS, linux: ./install.sh
2. windows: follow “windows instructions.txt”

1. macOS, linux: ./rasp.sh
2. windows: python3 RASP_support/REPL.py

Transformer

[h, e, |, 1, 0]

http://github.com/tech-srl/RASP

27

RASP s-ops and operations

Base s-ops:
* tokens([a, b, c]) =[a, b, c]

* indices([a, b, c]) =[0, 1, 2]

Follow along:
github.com/tech-srl/RASP
1. clone
2. set up:
1. macQOS, linux: ./install.sh
2. windows: follow “windows instructions.txt”

1. macOS, linux: ./rasp.sh
2. windows: python3 RASP_support/REPL.py

Transformer

[h, e, |, 1, 0]

http://github.com/tech-srl/RASP

28

RASP s-ops and operations

Base s-0ps:
+ tokens([a, b, c]) = [a, b, c]
+ indices(a, b, c]) = [0, 1, 2]
» 0(a, b, c]) =0, 0, 0]

* (all other constants)

Follow along:
github.com/tech-srl/RASP
1. clone

2. set up:
1. macQOS, linux: ./install.sh
2. windows: follow “windows instructions.txt”

1. macOS, linux: ./rasp.sh
2. windows: python3 RASP_support/REPL.py

Transformer

[h, e, |, 1, 0]

http://github.com/tech-srl/RASP

29

RASP s-ops and operations

- Base s-ops:
+ tokens([a, b, c]) =[a, b, c]
+ indices([a, b, c]) = [0, 1, 2]
» 0(a, b, c]) = [0, 0, O]

 (all other constants)

Follow along:
github.com/tech-srl/RASP
1. clone
2. set up:

1. macOS, linux: ./install.sh
2. windows: follow “windows instructions.txt”

1. macOS, linux: ./rasp.sh
2. windows: python3 RASP_support/REPL.py

Transformer

h, e |, 1, O]

http://github.com/tech-srl/RASP

30

RASP s-ops and operations

- Base s-ops:
+ tokens([a, b, c]) =[a, b, c]
+ indices([a, b, c]) = [0, 1, 2]
» 0(a, b, c]) = [0, 0, O]

 (all other constants)

Follow along:
github.com/tech-srl/RASP
1. clone
2. set up:

1. macOS, linux: ./install.sh
2. windows: follow “windows instructions.txt”

1. macOS, linux: ./rasp.sh
2. windows: python3 RASP_support/REPL.py

Transformer

h, e |, 1, O]

http://github.com/tech-srl/RASP

31

RASP s-ops and operations

- Base s-ops:
+ tokens([a, b, c]) =[a, b, c]
+ indices([a, b, c]) = [0, 1, 2]
» 0(a, b, c]) = [0, 0, O]

 (all other constants)

Follow along:
github.com/tech-srl/RASP
1. clone
2. set up:

1. macOS, linux: ./install.sh
2. windows: follow “windows instructions.txt”

1. macOS, linux: ./rasp.sh
2. windows: python3 RASP_support/REPL.py

Transformer

http://github.com/tech-srl/RASP

32

RASP s-ops and operations

 Base s-ops:
* tokens([a, b, c]) =[a, b, c]
* indices([a, b, c]) = [0, 1, 2]
* O(a, b, c])=[0, 0, 0]
 (all other constants)

* Elementwise operations:

e (indices+1)([a, b, c]) =[1, 2, 3]

Follow along:
github.com/tech-srl/RASP
1. clone
2. set up:
1. macOS, linux: ./install.sh
2. windows: follow “windows instructions.txt”

1. macOS, linux: ./rasp.sh
2. windows: python3 RASP_support/REPL.py

Transformer

http://github.com/tech-srl/RASP

33

RASP s-ops and operations

 Base s-ops:
* tokens([a, b, c]) =[a, b, c]
* indices([a, b, c]) = [0, 1, 2]
* O(a, b, c])=[0, 0, 0]
 (all other constants)
* Elementwise operations:
e (indices+1)([a, b, c]) =[1, 2, 3]

e (tokens=="b”)([a, b, c]) = [False, True, False]

Follow along:
github.com/tech-srl/RASP
1. clone
2. set up:
1. macOS, linux: ./install.sh
2. windows: follow “windows instructions.txt”

1. macOS, linux: ./rasp.sh
2. windows: python3 RASP_support/REPL.py

Transformer

http://github.com/tech-srl/RASP

 Base s-ops:
* tokens([a, b, c]) =[a, b, c]
* indices([a, b, c]) = [0, 1, 2]
* O(a, b, c])=[0, 0, 0]
 (all other constants)
* Elementwise operations:
e (indices+1)([a, b, c]) =[1, 2, 3]
e (tokens=="b”)([a, b, c]) = [False, True, False]
e (3 if tokens==“b” else 0)([a, b, c]) = [0, 3, 0]

* (all other basic char/num/bool operations)

34

RASP s-ops and operations

Follow along:

github.com/tech-srl/RASP

1. clone
2. set up:

1. macOS, linux: ./install.sh

2. windows: follow “windows instructions.txt”
3 run:

1. macOS, linux: ./rasp.sh

2. windows: python3 RASP_support/REPL.py

Multilayer feedforward networks
are universal approximators
(Hornik et al, 1989)

Transformer

http://github.com/tech-srl/RASP

RASP s-ops and operations

 Base s-ops: Follow along:
github.com/tech-srl/RASP

* tokens([a, b, c]) =[a, b, C] 1

clone
- indices([a, b, c]) = [0, 1, 2] 2. setup:
1. macOS, linux: ./install.sh
* 0(a, b, c]) =10, 0O, O] 2. windows: follow “windows instructions.txt”
3. run:
* (all other constants) 1. macOS, linux: ./rasp.sh

2. windows: python3 RASP_support/REPL.py

* Elementwise operations:

e (indices+1)([a, b, c]) =[1, 2, 3]
e (tokens=="b”)([a, b, c]) = [False, True, False]
e (3 if tokens==“b” else 0)([a, b, c]) = [0, 3, 0]

* (all other basic char/num/bool operations)

35

Transformer

http://github.com/tech-srl/RASP

- Base s-ops:
+ tokens([a, b, c]) =[a, b, c]
+ indices([a, b, c]) = [0, 1, 2]
» 0(a, b, c]) = [0, 0, 0]
- (all other constants)
- Elementwise operations:
+ (indices+1)(a, b, c]) = [1, 2, 3]
+ (tokens==“b")(a, b, c]) = [False, True, False]
+ (3 if tokens=="b” else 0)([a, b, c]) = [0, 3, O]

* (all other basic char/num/bool operations)

36

RASP s-ops and operations

Follow along:
github.com/tech-srl/RASP
1. clone
2. set up:

1. macOS, linux: ./install.sh
2. windows: follow “windows instructions.txt”

1. macOS, linux: ./rasp.sh
2. windows: python3 RASP_support/REPL.py

Transformer

Layer 1

embed

h, e |, 1, O]

http://github.com/tech-srl/RASP

RASP s-ops and operations

 Base s-ops: Follow along:
github.com/tech-srl/RASP

* tokens([a, b, c]) =[a, b, C] 1

clone
- indices([a, b, c]) = [0, 1, 2] 2. setup:
1. macOS, linux: ./install.sh
* 0(a, b, c]) =10, 0O, O] 2. windows: follow “windows instructions.txt”
3. run:
* (all other constants) 1. macOS, linux: ./rasp.sh

2. windows: python3 RASP_support/REPL.py

* Elementwise operations:

e (indices+1)([a, b, c]) =[1, 2, 3]
e (tokens=="b”)([a, b, c]) = [False, True, False]
e (3 if tokens==“b” else 0)([a, b, c]) = [0, 3, 0]

* (all other basic char/num/bool operations)

37

Transformer

Layer 1

embed

h, e |, 1, O]

http://github.com/tech-srl/RASP

RASP s-ops and operations

 Base s-ops: Follow along:
github.com/tech-srl/RASP

* tokens([a, b, c]) =[a, b, C] 1

clone
- indices([a, b, c]) = [0, 1, 2] 2. setup:
1. macOS, linux: ./install.sh
* 0(a, b, c]) =10, 0O, O] 2. windows: follow “windows instructions.txt”
3. run:
* (all other constants) 1. macOS, linux: ./rasp.sh

2. windows: python3 RASP_support/REPL.py

* Elementwise operations:

e (indices+1)([a, b, c]) =[1, 2, 3]
e (tokens=="b”)([a, b, c]) = [False, True, False]
e (3 if tokens==“b” else 0)([a, b, c]) = [0, 3, 0]

* (all other basic char/num/bool operations)

38

Transformer

Layer 1

embed

h, e |, 1, O]

http://github.com/tech-srl/RASP

Background - Self Attention (Single Head)

iiiii

Background - Self Attention (Single Head)

Background - Self Attention (Single Head)

. . I
kground - Self Attention (Single Head)
Backg

n

.
« -
|

Background - Self Attention (Single Head)

n
< >

dk
| '
k

SSSSSS

Background - Self Attention (Single Head)

n N 1
< dx >
—

SSSSSS

Background - Self Attention (Single Head)

SSSSSS

Background - Self Attention (Single Head)

SCores

input

normalise (i.e. X 1/ \/Ek)

softmax

Wi 1Wia2 W13

weights

Background - Self Attention (Single Head)

scores
input

Wi 1Wia2 W13

weights

Background - Self Attention (Single Head)

SCores

- ‘ normalise (i.e. X 1/\@{)
kl

softmax

d

input

d

<

weights V

—_—
out,

< dv

1
%)
V3

<

dk
%
d,—

Background - Self Attention (Single Head)

SCores

input

normalise (i.e. X 1/ \ﬁk)

softmax

Background - Self Attention (Single Head)

SCores

Background - Self Attention (Single Head)

Attention Head scores

S0, how do we present an
attention head?

Self Attention (Single Head)

Attention Head scores

normalise (i.e. X 1/\/31C)

Self Attention (Single Head)

Self Attention (Single Head)

iiiii

Single Head: Scoring < Selecting

Scores

Single Head: Scoring < Selecting

Decision: RASP abstracts to binary

select/don’t select decisions —_ Select(: [O, 1 ,2] ==

* This is not RASP syntax -
RASP composes functions.
Will see soon

input m
—_
K
dy Yorr
q x
\ —
dy

weights l

Single Head: Scoring < Selecting

Decision: RASP abstracts to binary
select/don’t select decisions —_ select [0 1 2] =
tRASP yt

RASP mp f ctio
Will s

O
1
2

T

>~Q'H Sl R ‘:-‘:‘:
|

/

weights l

I

Single Head: Scoring < Selecting

Decision: RASP abstracts to binary

select/don’t select decisions — SeleCt(

* This is not RASP syntax -
RASP composes functions.
Will see soon

TT

scores

Single Head: Scoring < Selecting

Decision: RASP abstracts to binary
select/don’t select decisions —_ Select(: [0,1 ,2]

* This is not RASP syntax -
RASP composes functions.
Will see soon

inpu

N . S) 2
\ —

d
d, /

weights l

Single Head: Scoring < Selecting

Decision: RASP abstracts to binary

select/don’t select decisions —_ Select(: [0, 1 ,2] ==

* This is not RASP syntax -

RASP composes functions.
. . Will see soon

O - T

Single Head: Scoring < Selecting

Decision: RASP abstracts to binary

select/don’t select decisions —_ Select(: [0, 1 ,2] ==

* This is not RASP syntax -
RASP composes functions.
Will see soon

2 1

Single Head: Scoring < Selecting

Decision: RASP abstracts to binary

select/don’t select decisions —_ Select(: [0, 1 ,2] ==

* This is not RASP syntax -

RASP composes functions.
Will see soon

Single Head: Scoring < Selecting

Decision: RASP abstracts to binary

select/don’t select decisions —_ Select(: [0, 1 ,2] ==

* This is not RASP syntax -
RASP composes functions.
Will see soon

TT

N = O

T Another example:

sl ormalise (i.e. X |‘ = SeleCt(5[051 !2]

TT

N = O
i

Single Head: Weighted Average < Aggregation

Single Head: Weighted Average < Aggregation

new=aggregate(s/, [1,2,4])

1 2 4 * This is not RASP syntax -
RASP composes functions.

T T 1 2 4 = 3 Will see soon
124 == 0 => [3,0,1]
T 124 => 1

Single Head: Weighted Average < Aggregation

new=aggregate(s/, [1,2,4])

1 2 4 * This is not RASP syntax -
RASP composes functions.

T T - 3 Will see soon
= 0 => [3,0,1]
T =>

5

Single Head: Weighted Average < Aggregation

new=aggregate(s/, [1,2,4])

1 2 4 * This is not RASP syntax -
RASP composes functions.

m -~ 3 Will see soon
= 0 => [3,0,1]
1p4 |=> 1

Single Head: Weighted Average < Aggregation

new=aggregate(s/, [1,2,4])

1 2 4 * This is not RASP syntax -
RASP composes functions.

TT m - 3 Will see soon
=> |10 => [3,0,1]
T 1p4 |=> |1

Single Head: Weighted Average < Aggregation

new=aggregate(s/, [1,2,4])

1 2 4 * This is not RASP syntax -
RASP composes functions.

T T 1 2 4 =~ 3 Will see soon
124 == 0 => [3,0,1]
T 124 => 1

Symbolic language + no averaging when only

one position selected allows (for example):

reverse=aggregate(’'ip, [A,B,C])

ABC
T ABC = C
T ABC => B => [C,BA]
T ABC = A

RASP s-ops and operations

 Base s-ops: Follow along:
github.com/tech-srl/RASP

* tokens([a, b, c]) =[a, b, C] 1

clone
- indices([a, b, c]) = [0, 1, 2] 2. setup:
1. macOS, linux: ./install.sh
* 0(a, b, c]) =10, 0O, O] 2. windows: follow “windows instructions.txt”
3. run:
* (all other constants) 1. macOS, linux: ./rasp.sh

2. windows: python3 RASP_support/REPL.py

* Elementwise operations:

e (indices+1)([a, b, c]) =[1, 2, 3]
e (tokens=="b”)([a, b, c]) = [False, True, False]
e (3 if tokens==“b” else 0)([a, b, c]) = [0, 3, 0]

* (all other basic char/num/bool operations)

71

Transformer

Layer 1

embed

h, e |, 1, O]

http://github.com/tech-srl/RASP

/2

RASP s-ops and operations

 Base s-ops:
* tokens([a, b, c]) =[a, b, c]
* indices([a, b, c]) = [0, 1, 2]
* O(a, b, c])=[0, 0, 0]
 (all other constants)
* Elementwise operations:
e (indices+1)([a, b, c]) =[1, 2, 3]
e (tokens=="b”)([a, b, c]) = [False, True, False]
e (3 if tokens==“b” else 0)([a, b, c]) = [0, 3, 0]
* (all other basic char/num/bool operations)
» Select-Aggregate operations:

0,1,0

 select(indices, indices+1, ==)([a, b, c])= [0,0,1
0,0,0

e aggregate(s, tokens, “V’)([a, b, c]) = [b, c, !]

|

Follow along:
github.com/tech-srl/RASP
1. clone
2. set up:

1. macOS, linux: ./install.sh
2. windows: follow “windows instructions.txt”

1. macOS, linux: ./rasp.sh
2. windows: python3 RASP_support/REPL.py

(mark as s)

Transformer

Layer 1

embed

h, e |, 1, O]

http://github.com/tech-srl/RASP

/3

RASP s-ops and operations

 Base s-ops:

* tokens([a, b, c]) =[a, b, c]
* indices([a, b, c]) = [0, 1, 2]
* O(a, b, c]) =10, 0, 0]

 (all other constants)

* Elementwise operations:

e (indices+1)([a, b, c]) =[1, 2, 3]

e (tokens=="b”)([a, b, c]) = [False, True, False]

e (3 if tokens==“b” else 0)([a, b, c]) = [0, 3, 0]

* (all other basic char/num/bool operations)

» Select-Aggregate operations:

e aggregate(s, tokens, “V’)([a, b, c]) = [b, c, !]

e Extra: Selector combinations:

1,1,0
» (select(indices, indices+1, ==) or select(indices, 1, <))([a, b, c]) = [LOJJ

|

0,1,0
0,0,1
0,0,0

|

|

1,0,0
1,0,0
1,0,0

0,1,0
 select(indices, indices+1, ==)([a, b, c])= [0,0,1]
0,0,0

|

Follow along:
github.com/tech-srl/RASP
1. clone
2. set up:

1. macOS, linux: ./install.sh
2. windows: follow “windows instructions.txt”

1. macOS, linux: ./rasp.sh
2. windows: python3 RASP_support/REPL.py

(mark as s)

1,0,0

Transformer

Layer 1

embed

h, e |, 1, O]

http://github.com/tech-srl/RASP

74

RASP s-ops and operations

 Base s-ops:

* tokens([a, b, c]) =[a, b, c]
* indices([a, b, c]) = [0, 1, 2]
* O(a, b, c]) =10, 0, 0]

 (all other constants)

* Elementwise operations:

e (indices+1)([a, b, c]) =[1, 2, 3]

e (tokens=="b”)([a, b, c]) = [False, True, False]

e (3 if tokens==“b” else 0)([a, b, c]) = [0, 3, 0]

* (all other basic char/num/bool operations)

» Select-Aggregate operations:

e aggregate(s, tokens, “V’)([a, b, c]) = [b, c, !]

e Extra: Selector combinations:

1,1,0
» (select(indices, indices+1, ==) or select(indices, 1, <))([a, b, c]) = [LOJJ

|

0,1,0
0,0,1
0,0,0

|

|

1,0,0
1,0,0
1,0,0

0,1,0
 select(indices, indices+1, ==)([a, b, c])= [0,0,1]
0,0,0

|

Follow along:
github.com/tech-srl/RASP
1. clone
2. set up:

1. macOS, linux: ./install.sh
2. windows: follow “windows instructions.txt”

1. macOS, linux: ./rasp.sh
2. windows: python3 RASP_support/REPL.py

(mark as s)

1,0,0

can also be and or not

Transformer

Layer 1

embed

h, e |, 1, O]

http://github.com/tech-srl/RASP

[a, b, c, d, €]

RASP s-ops and operations

Transformer
de-embed
 Base s-ops: Follow along:
github.com/tech-srl/RASP Layer L
* tokens([a, b, c]) =[a, b, C] | clone "
T _ 2. set up:
* indices([a, b, c]) =10, 1, 2
(h=1 | 1. macQOS, linux: ./install.sh Layer 2
* O(a, b, c]) =10, 0, 0] 2. windows: follow “windows instructions.txt” Layer 1
3. run:
* (all other constants) 1. macQOS, linux: ./rasp.sh
» Elementwise operations: 2. windows: python3 RASP_support/REPL.py

e (indices+1)([a, b, c]) =[1, 2, 3]
e (tokens=="b”)([a, b, c]) = [False, True, False]
e (3 if tokens==“b” else 0)([a, b, c]) = [0, 3, 0]
* (all other basic char/num/bool operations)

» Select-Aggregate operations:

0,1,0

 select(indices, indices+1, ==)([a, b, c])= [0,0,1
0,0,0

e aggregate(s, tokens, “V’)([a, b, c]) = [b, c, !]

(mark as s)

e Extra: Selector combinations:

1,1,0 embed
» (select(indices, indices+1, ==) or select(indices, 1, <))([a, b, c]) = [1,0,1J
0,1,0 1.0.0 1,0,0
0 o [h, e, |, 1, 0]
00,1 1,0,0 el
0,0,0 1.0.0 can also be and or not

http://github.com/tech-srl/RASP

/6

Small RASP exercises

Follow along:

github.com/tech-srl/RASP

1. clone
2. set up:
1.
2.
3 run:
1.
2.

macOS, linux: ./install.sh
windows: follow “windows instructions.txt”

macOS, linux: ./rasp.sh
windows: python3 RASP_support/REPL.py

http://github.com/tech-srl/RASP

Follow along:

github.com/tech-srl/RASP
1. clone

Small RASP exercises S N

2. windows: follow “windows instructions.txt”

3. run:
1. macOS, linux: ./rasp.sh
2. windows: python3 RASP_support/REPL.py

Quick prep

>> set example "banana"
>> tokens;
s—op: tokens
Example: tokens ("banana") = [b, a, n, a, n, al] (strings)
>> 1ndices:
s—op: 1ndices
Example: 1ndices ("banana") = [0, 1, 2, 3, 4, 5] (ints)

http://github.com/tech-srl/RASP

/8

Small RASP exercises

1. Mark “a”’s

Target: set “a” tokens as “!”, leave others unchanged

Follow along:

github.com/tech-srl/RASP

1. clone
2. set up:

1. macOS, linux: ./install.sh

2. windows: follow “windows instructions.txt™
3. run:

1. macOS, linux: ./rasp.sh

2. windows: python3 RASP_support/REPL.py

http://github.com/tech-srl/RASP

Small RASP exercises

1. Mark “a”’s

Target: set “a” tokens as “!”, leave others unchanged

Solution: comparison + ternary operator

79

Follow along:

github.com/tech-srl/RASP

1. clone
2. set up:

1.
2.

3. run:

1.
2.

macOS, linux: ./install.sh
windows: follow “windows instructions.txt”

macOS, linux: ./rasp.sh
windows: python3 RASP_support/REPL.py

http://github.com/tech-srl/RASP

Small RASP exercises

1. Mark “a”’s

Target: set “a” tokens as “!”, leave others unchanged

Solution: comparison + ternary operator

tokens=="3"

80

Follow along:

github.com/tech-srl/RASP

1. clone
2. set up:

macOS, linux: ./install.sh
windows: follow “windows instructions.txt”

macOS, linux: ./rasp.sh
windows: python3 RASP_support/REPL.py

http://github.com/tech-srl/RASP

81

Small RASP exercises

1. Mark “a”’s

Target: set “a” tokens as “!”, leave others unchanged

Solution: comparison + ternary operator

>> soll = "!" 1f tokens=="a" else tokens:;

Follow along:

github.com/tech-srl/RASP

1. clone
2. set up:

1. macOS, linux: ./install.sh

2. windows: follow “windows instructions.txt™
3. run:

1. macOS, linux: ./rasp.sh

2. windows: python3 RASP_support/REPL.py

http://github.com/tech-srl/RASP

Follow along:

github.com/tech-srl/RASP
1. clone

Small RASP exercises S N

2. windows: follow “windows instructions.txt”

1. Mark “a”’s 3.

1. macOS, linux: ./rasp.sh
2. windows: python3 RASP_support/REPL.py

Target: set “a” tokens as “!”, leave others unchanged

Solution: comparison + ternary operator

>> soll = "!" 1f tokens=="a" else tokens:;
s—op: soll

Example: soll ("banana") (strings)

http://github.com/tech-srl/RASP

83

Small RASP exercises

1. Mark “a”’s

Target: set "a” tokens as

Solution: comparison + ternary operator

>> soll = "I" 1f
s—op: soll

Example:

>> soll("abc"):

soll

(1

(strings)

')

, leave others unchanged

tokens=="a" else tokens;

Follow along:

github.com/tech-srl/RASP

1. clone
2. set up:

1. macOS, linux: ./install.sh

2. windows: follow “windows instructions.txt™
3. run:

1. macOS, linux: ./rasp.sh

2. windows: python3 RASP_support/REPL.py

(strings)

http://github.com/tech-srl/RASP

84

Small RASP exercises

2. Repeat first token

Follow along:

github.com/tech-srl/RASP

1. clone
2. set up:
1.
2.
3. run:
1.
2.

macOS, linux: ./install.sh
windows: follow “windows instructions.txt”

macOS, linux: ./rasp.sh
windows: python3 RASP_support/REPL.py

Target: output first token at each position, e.g. “abc” — “aaa”

http://github.com/tech-srl/RASP

85

Small RASP exercises
2. Repeat first token

Follow along:

github.com/tech-srl/RASP

1. clone
2. set up:

macOS, linux: ./install.sh
windows: follow “windows instructions.txt”

macOS, linux: ./rasp.sh
windows: python3 RASP_support/REPL.py

Target: output first token at each position, e.g. “abc” — “aaa”

Solution: (1) have all tokens focus on first position, (2) copy it

http://github.com/tech-srl/RASP

86

Small RASP exercises
2. Repeat first token

Follow along:
github.com/tech-srl/RASP
1. clone
2. set up:
1. macOS, linux: ./install.sh
2. windows: follow “windows instructions.txt”

3. run:
1. macOS, linux: ./rasp.sh
2. windows: python3 RASP_support/REPL.py

Target: output first token at each position, e.g. “abc” — “aaa”

Solution: (1) have all tokens focus on first position, (2) copy it

>> sel2 = select(indices,9,==);

selector: sel?
Example:

http://github.com/tech-srl/RASP

Follow along:
github.com/tech-srl/RASP
1. clone

Small RASP exercises S N

2. windows: follow “windows instructions.txt”

2. Repeat first token s i st

2. windows: python3 RASP_support/REPL.py

Target: output first token at each position, e.g. “abc” — “aaa”

Solution: (1) have all tokens focus on first position, (2) copy it

>> sel2 = select(indices,9,==);
selector: sel?
Example:

>> s0l2 = aggregate(sel2, tokens);
S—op: So0l?
Example: sol2 ("banana") = [I (strings)

http://github.com/tech-srl/RASP

88

Follow along:
github.com/tech-srl/RASP

1. clone

Small RASP exercises S N

2. windows: follow “windows instructions.txt”

3. Mark first instances 3. rn

1. macOS, linux: ./rasp.sh
2. windows: python3 RASP_support/REPL.py

Target: mark for each position whether it shows new token, e.g. "aba” — [T, T, F]

http://github.com/tech-srl/RASP

89

Follow along:

github.com/tech-srl/RASP

1. clone

Small RASP exercises e

2.

3. Mark first instances 6. nn

2.

macOS, linux: ./install.sh
windows: follow “windows instructions.txt”

macOS, linux: ./rasp.sh
windows: python3 RASP_support/REPL.py

Target: mark for each position whether it shows new token, e.q.

“aba” = [T, T, F]

Solution: (1) seek previous positions with same token, (2) aggregate their

positions, (3) report whether legal

http://github.com/tech-srl/RASP

Follow along:
github.com/tech-srl/RASP
1. clone

Small RASP exercises S N

2. windows: follow “windows instructions.txt”

3. Mark first instances s i st

2. windows: python3 RASP_support/REPL.py

Target: mark for each position whether it shows new token, e.g. "aba” — [T, T, F]

Solution: (1) seek previous positions with same token, (2) aggregate their
positions, (3) report whether legal

>> prev_instances = select(tokens, tokens, ==) and select(indices, indices, <);
selector: prev_instances
Example:

http://github.com/tech-srl/RASP

Follow along:
github.com/tech-srl/RASP
1. clone

Small RASP exercises S N

2. windows: follow “windows instructions.txt”

3. Mark first instances s i st

2. windows: python3 RASP_support/REPL.py

Target: mark for each position whether it shows new token, e.g. "aba” — [T, T, F]

Solution: (1) seek previous positions with same token, (2) aggregate their
positions, (3) report whether legal

>> prev_instances = select(tokens, tokens, ==) and select(indices, indices, <);
selector: prev_instances
Example:

>> prev_locs = aggregate(prev_instances, indices, -1);
s—op: prev_locs
Example: prev_locs (nana") = (floats)

http://github.com/tech-srl/RASP

Follow along:
github.com/tech-srl/RASP
1. clone

Small RASP exercises S N

2. windows: follow “windows instructions.txt”

3. Mark first instances s i st

2. windows: python3 RASP_support/REPL.py

Target: mark for each position whether it shows new token, e.g. "aba” — [T, T, F]

Solution: (1) seek previous positions with same token, (2) aggregate their
positions, (3) report whether legal

>> prev_instances = select(tokens, tokens, ==) and select(indices, indices, <);
selector: prev_instances
Example:

>> prev_locs = aggregate(prev_instances, indices, -1);
s—op: prev_locs

Example: prev_locs (nana") = (floats)
>> s0l3 = prev_locs==-1;
s—op: sol3

(bools)

Example: sol3 ("banana")

http://github.com/tech-srl/RASP

93

Follow along:

github.com/tech-srl/RASP

1. clone

Small RASP exercises S N

4. Get position of first “a” 5

2.

1.
2.

windows: follow “windows instructions.txt”

macOS, linux: ./rasp.sh
windows: python3 RASP_support/REPL.py

Target: output first “a” position at each position, e.g. “abc” ~ [0,0,0]

http://github.com/tech-srl/RASP

94

Small RASP exercises

4. Get position of first “a”

Follow along:

github.com/tech-srl/RASP

1. clone
2. set up:

1. macOS, linux: ./install.sh

2. windows: follow “windows instructions.txt™
3. run:

1. macOS, linux: ./rasp.sh

2. windows: python3 RASP_support/REPL.py

Target: output first “a” position at each position, e.g. “abc” ~ [0,0,0]

Solution: (1) mark first token positions, (2) focus on first “a” position, (3)

aggregate Its position

http://github.com/tech-srl/RASP

95

Small RASP exercises

4. Get position of first “a”

Follow along:

github.com/tech-srl/RASP

1. clone
2. set up:
1.
2.
3. run:
1.
2.

macOS, linux: ./install.sh
windows: follow “windows instructions.txt”

macOS, linux: ./rasp.sh
windows: python3 RASP_support/REPL.py

Target: output first “a” position at each position, e.g. “abc” ~ [0,0,0]

Solution: (1) mark first token positions, (2) focus on first “a” position, (3)

aggregate Its position

>> 1s_first = so0l3;
s—op: 1s _first

Example: is first ((bools)

e
Il

http://github.com/tech-srl/RASP

Follow along:

github.com/tech-srl/RASP
1. clone

Small RASP exercises S N

. i cc . 2. windows: follow “windows instructions.txt”

4. Get position of first “a o .
1. macOS, linux: ./rasp.sh

2. windows: python3 RASP_support/REPL.py

Target: output first “a” position at each position, e.g. “abc” ~ [0,0,0]

Solution: (1) mark first token positions, (2) focus on first “a” position, (3)
aggregate Its position

>> 1s_first = so0l3;
s—op: 1s _first
Example: is first ("banana") = '] (bools)
>> sel first a = select(is _first,True,==) and select(tokens,"a",==):
selector: sel first a
Example:

http://github.com/tech-srl/RASP

97

Small RASP exercises

4. Get position of first “a”

Follow along:

github.com/tech-srl/RASP

1. clone

2. set up:
1.
2.

3. run:
1.
2.

macOS, linux: ./install.sh
windows: follow “windows instructions.txt”

macOS, linux: ./rasp.sh
windows: python3 RASP_support/REPL.py

Target: output first “a” position at each position, e.g. “abc” ~ [0,0,0]

Solution: (1) mark first token positions, (2) focus on first “a” position, (3)

aggregate Its position

>> 1s_first = sol3;
s—op: 1s _first
Example: is_first ("banana") =

(bools)

>> sel first a = select(is _first,True,==) and select(tokens,"a",==):

selector: sel first a
Example:

>> s0l4 = aggregate(sel_first_a, indices, -1);

Ss—op: Ssol4
Example: sol4 (nana") =

(ints)

http://github.com/tech-srl/RASP

98

Small RASP exercises
5. Compute length

Target: output input length at each position,

e.g. “abc” — [3, 3, 3]

99

Small RASP exercises
5. Compute length

Target: output input length at each position,
e.g. “abc” — [3, 3, 3]

Solution (attempt):
(1) select all positions
(2) send 1 from all positions

(3) aggregate the 1

Small RASP exercises
5. Compute length

Target: output input length at each position, >> sel all = select(1,1,==):
selector: sel all

e.g. "“abc” ~ [3, 3, 3] Example:

Solution (attempt):
(1) select all positions

(2) send 1 from all positions

(3) aggregate the 1

100

Small RASP exercises
5. Compute length

Target: output input length at each position, >> sel all = select(1,1,==):
” ' selector: sel all
€.g. "abc” > [3, 3, 3] Example:
Solution (attempt):
(1) select all positions

(2) send 1 from all positions

(3) aggregate the 1

>> v = aggregate(sel_all, 1);

101

Small RASP exercises
5. Compute length

Target: output input length at each position, >> sel all = select(1,1,==):
selector: sel_all

€.g. "apc” [3,3, 3] Example:

Solution (attempt):

1) select all positions

(
(2
(
(

)
) send 1 from all positions
3) aggregate the 1

)

>> v = aggregate(sel_all, 1);
S—0p: V
Example: v() = (floats)

4) ... get 1

102

Small RASP exercises
5. Compute length

Target: output input length at each position, >> sel all = select(1,1,==):
selector: sel all

e.g. “abc” ~ [3, 3, 3] Example:

Solution (attempt):

1) select all positions

(1)
(2) send 1 from all positions
(3) aggregate the 1

(4)

>> v = aggregate(sel_all, 1);
S—0p: V
Example: v) = L] (floats)
>> v("h1i"):
= | 2 (floats)

4) ... get 1 regardless of length

103

Small RASP exercises
5. Compute length

Target: output input length at each position, >> sel all = select(1,1,==):
selector: sel all

e.g. “abc” ~ [3, 3, 3] Example:

Solution (attempt):

1) select all positions

3) aggregate the 1
>> v = aggregate(sel_all, 1);
S—0p: V
Example: v) = L] (floats)

attention *averages*, doesn’t sum! >> v("h1");
= | 2 (floats)

(1)
(2) send 1 from all positions
(3)
(4)

4) ... get 1 regardless of length

104

Small RASP exercises
5. Compute length (v1)

Target: output input length at each position,
e.g. “abc” — [3, 3, 3]

Solution (v1):

105

Small RASP exercises
5. Compute length (v1)

Target: output input length at each position,
e.g. “abc” — [3, 3, 3]
Solution (v1):

(1) mark position without higher
position

(2) get location of that position

106

Small RASP exercises
5. Compute length (v1)

Target: output input length at each position,
e.g. “abc” - [3, 3, 3]
Solution (v1):

(1) mark position without higher
position

(2) get location of that position

107

Small RASP exercises
5. Compute length (v1)

Target: output input length at each position,
e.g. “abc” - [3, 3, 3]
Solution (v1):

(1) mark position without higher
position:

(a) select next position
(b) aggregate its index
(c) mark if illegal result

(2) get location of that position

108

Small RASP exercises

5. ComPUte Iength (V1) >> sel _next = select(indices, indices+1l, ==):

selector: sel next
Example:

Target: output input length at each position,

e.g. “abc” - [3, 3, 3]

Solution (v1):

(1) mark position without higher
position:

(a) select next position
(b) aggregate its index
(c) mark if illegal result

(2) get location of that position

109

Small RASP exercises

5. ComPUte Iength (V1) >> sel _next = select(indices, indices+1l, ==):

selector: sel next
Example:

Target: output input length at each position,

e.g. “abc” - [3, 3, 3]

Solution (v1):
>> next_pos = aggregate(sel_next, indices, -1);

.y . : S—op: next_pos
(1) mark position without higher Example: next pos - (ints)

position:
(a) select next position
(b) aggregate its index
(c) mark if illegal result

(2) get location of that position

110

Small RASP exercises

5. ComPUte Iength (V1) >> sel next = select(indices, i1ndices+1l, ==);

selector: sel next
Example:

Target: output input length at each position,

e.g. “abc” - [3, 3, 3]

Solution (v1):
>> next_pos = aggregate(sel_next, indices, -1);

S—0op: next_pos

(1)m_ark position without higher Example: mext pos ("banana') = (ints)
posmon: >> 1s_highest_pos = next_pos == -1;
s—op: 1s_highest_pos
(a) select next position Example: is_highest_pos ("banana") = [F, F, F, F, F (bools)

(b) aggregate its index
(c) mark if illegal result

(2) get location of that position

111

Small RASP exercises

5. ComPUte Iength (V1) >> sel next = select(indices, i1ndices+1l, ==);

selector: sel next
Example:

Target: output input length at each position,

e.g. “abc” - [3, 3, 3]

Solution (v1): _
>> next_pos = aggregate(sel_next, indices, -1);

S—0op: next_pos

(1)m_ark position without higher cxample: next pos ("banana') = [1. 2. 3, 4 1 (ints)
position: >> is_highest_pos = next_pos == -1;
s—op: 1s_highest_pos
(a) select next position Example: is_highest_pos ("banana") = [F, F, F, F, F, T] (bools)

(b) aggregate its index
(c) mark if illegal result

(2) get location of that position

112

Small RASP exercises

5. ComPUte Iength (V1) >> sel next = select(indices, i1ndices+1l, ==);

selector: sel next
Example:

Target: output input length at each position,

e.g. “abc” - [3, 3, 3]

Solution (v1):
>> next_pos = aggregate(sel_next, indices, -1);

S—0op: next_pos

(1)m_ark position without higher Example: mext pos ("banana') = (ints)
posmon: >> 1s_highest_pos = next_pos == -1;
s—op: 1s_highest_pos
(a) select next position Example: is_highest_pos ("banana") = [F, F, F, F, F (bools)

(b) aggregate its index
(c) mark if illegal result

(2) get location of that position:
(a) select highest position

(b) aggregate its index

113

114

Small RASP exercises

5. Compute length (v1)

Target: output input length at each position,
e.g. “abc” - [3, 3, 3]
Solution (v1):

(1) mark position without higher
position:

(a) select next position
(b) aggregate its index
(c) mark if illegal result
(2) get location of that position
(a) select highest position

(b) aggregate its index

>>

>>

>>

>>

sel next = select(indices, indices+1l, ==);
selector: sel next
Example:

next_pos = aggregate(sel_next, indices, -1);

S—0op: next_pos

Example: next _pos ("banana") =
1s_highest_pos = next_pos == -1;
s—op: 1s_highest_pos
Example: is_highest_pos ("banana") =

sel_highest = select(is_highest_pos, True,
selector: sel_highest
Example:

I

(ints)

(bools)

Small RASP exercises

5. ComPUte Iength (V1) >> sel next = select(indices, i1ndices+1l, ==);

selector: sel next
Example:

Target: output input length at each position,

e.g. “abc” - [3, 3, 3]

Solution (v1): *»
>> next_pos = aggregate(sel_next, indices, -1);

- : : S—0p: next_pos
(1) m_ark pOSItIOﬂ without hlgher Example: next _pos ("banana") = [1, 2, 3, 4, 5, 1 (ints)
position: >> is_highest_pos = next_pos == -1;
s—op: 1s_highest_pos
(a) select next position Example: 1s_highest_pos ("banana") = [F, F, F, F, F, T] (bools)
>> sel_highest = select(is_highest_pos, True, ==);
TR selector: sel_highest

(b) aggregate its index Example:

(c) mark if illegal result

(2) get location of that position

(a) select highest position

- >> length_vl = aggregate(Sel_highest, ihdices) + 1;
(b) aggregate its index s—op: length_v1

115 Example: length_v1 ("banana") = [6]%6 (1ints)

Small RASP exercises
5. ComPUte Iength (V1) >> = select(indices, indices+1l, ==);

: sel next
ExampXe:

Target: output input length at each position, .

e.g. “abc” - [3, 3, 3] 1

Solution (v1):

(1) mark position without higher
position:

4, 5, =11 (ints)

= op:

amnlie:
>>|sel hlghest 1S_
selector: sel _highes

(b) aggregate its index
D ada N a N a
(c) mark if illegal result 1
(2) get location of that position %
(a) select highest position h

>> length_vl = aggregate(| indices) + 1;

(b) aggregate its index s—op: length_v1l
Example: length_vl ("banana") = [6]1%6 (1ints)

(a) select next position F, F, F, F, T1 (bools)

[=.

116

Small RASP exercises
5. ComPUte Iength (V1) >> = select(indices, indices+1l, ==);

: sel next
ExampXe:

b anana
. : Ly D]
Target: output input length at each position, :

n 1

e.g. “abc” - [3, 3, 3]

Solution (v1):

(1) mark position without higher
position:

5, =11 (ints)

= op:

amnple:
>>|sel hlghest select(is_
selector: sel _highes

(b) aggregate its index)

(c) mark if illegal result ce e depends on output of
(2) get location of that position :

(a) select highest position :

>> length_vl = aggregate(| indices) + 1;

(b) aggregate its index s—op: length_v1
Example: length_vl ("banana") = [6]%6 (ints)

(a) select next position F, F, F, T1 (bools)

117

Small RASP exercises
5. ComPUte Iength (V1) >> = select(indices, indices+1l, ==);

: sel next

ExampXke:

Target: output input length at each position,

e.g. “abc” - [3, 3, 3]

Solution (v1):

(1) mark position without higher
position:

5, =11 (ints)

= op:

amnple:
>>|sel h1ghest select(is_
selector: sel _highes

(b) aggregate its index)

(c) mark if illegal result b venens depends on output of
(2) get location of that position lj: i 2 layers!

(a) select highest position) i

>> length_v1l = aggregate(indices) + 1;

(b) aggregate its index s—op: length_v1
Example: length_vl ("banana") = [6]x6 (ints)

(a) select next position F, F, F, T1 (bools)

118

Small RASP exercises
5. Compute length (v1)

Target: output input length at each position,

e.g. “abc” ~ [3, 3, 3] //2/3/4/5
Solution (v1): LEELEL
(1) mark position without higher TEEEE

position: —
(a) select next pOSitiOn \ \ / / (sel_highest)
(b) aggregate its index >> draw(length_vl) ;

// \\ = [6]%6 (ints)

(c) mark if illegal result

(2) get location of that position [Rmdics] 0

(a) select highest position —

(b) aggregate its index 2 layers H T WEEEE

119

Small RASP exercises
6. Compute length (v2 - one layer)

Target: output input length at
each position,

e.g. “‘abc” — [3, 3, 3]

Solution (v2):

120

Small RASP exercises
6. Compute length (v2 - one layer)

Target: output input length at
each position,

e.g. “abc” ~ [3, 3, 3]
Solution (v2):

(1) mark *all* positions

(2) send 1 from only one
location

(3) invert the average!

121

Small RASP exercises
6. Compute length (v2 - one layer)

>> sel all = select(1, 1, ==);
selector: sel all
Example:

Target: output input length at
each position,

e.g. “abc” — [3, 3, 3]
Solution (v2):
(1) mark *all* positions

(2) send 1 from only one
location

(3) invert the average!

122

Small RASP exercises
6. Compute length (v2 - one layer)

>> sel all = select(1, 1, ==);
selector: sel all

. Example:
Target: output input length at
each position,
e.g. “‘abc” — [3, 3, 3]
_ >> mark_zero = indicator(indices==0);
SOIUthn (V2): S_Opéx:;;l{g?e;(;rk_zero ("l) = , (1nts)

(1) mark *all* positions

(2) send 1 from only one
location

(3) invert the average!

123

Small RASP exercises
6. Compute length (v2 - one layer)

>> sel all = select(1, 1, ==);
selector: sel all
Example:

Target: output input length at
each position,

e.g. “‘abc” — [3, 3, 3]

>> mark_zero = indicator(indices==0);

Solution (V2): s—op: mark_zero

Example: mark _zero (") = | (ints)
>> 1nverted_length = aggregate(sel_all, mark_zero);
s—op: 1nverted_length

(1) mark *a”* pOSItIOnS Example: inverted_length (na") = (floats)

(2) send 1 from only one
location

(3) invert the average!

124

Small RASP exercises
6. Compute length (v2 - one layer)

>> sel all = select(1, 1, ==);
selector: sel all
Example:

Target: output input length at
each position,

e.g. “‘abc” — [3, 3, 3]

>> mark _zero = indicator(indices==0):
- . s—op: mark zero
SOIUtlon (V2)' Example: mark _zero ("banana") = | | (i1nts)
>> 1nverted_length = aggregate(sel_all, mark_zero);
* * L s—op: 1nverted_length
(1) mark a” pOS|t|OnS Example: i1nverted_length (nail) = (floats)
>> length_v2 = round(l/inverted_length);
s—op: length_v2

(2) Send 1 frOm Only one Example: length_v2 ("banana") = (1nts)
location

(3) invert the average!

125

Small RASP exercises
6. Compute length (v2 - one layer)

>> sel all = select(1, 1, ==);
selector: sel all
Example:

Target: output input length at
each position,

e.g. “‘abc” — [3, 3, 3]

>> mark_zero = indicator(indices==0);
Solution (v2): s-op: mark_zero
Example mark_zero ("banana") = , 9, 0] (1ints)
>> inverted_length = aggregate(sel_ a11 mark zero)
s—op: 1nverted_length

(1) mark *a”* pOSItIOnS Example: inverted_length ("banana") = | (floats)

>> length_v2 = round(1/inverted length)
s—op: length_v2

(2) Send 1 frOm Only one Example: length_v2 ("banana") = (1nts)
location

(3) invert the average! Library s-op in RASP (“length”)

126

Small RASP exercises

7. Reverse

Target: flip input sequence, e.g. “abc” — “cba”

Small RASP exercises

7. Reverse

Target: flip input sequence, e.g. “abc” — “cba”

Solution: (1) compute opposite position, (2) seek it, (3) get its token

128

Small RASP exercises

7. Reverse

Target: flip input sequence, e.g. “abc” — “cba”

Solution: (1) compute opposite position, (2) seek it, (3) get its token

>> opposite_pos = length_v2 - indices - 1;
s—op: opposite pos
Example: opposite pos () = (1nts)

129

Small RASP exercises

7. Reverse

Target: flip input sequence, e.g. “abc” — “cba”

Solution: (1) compute opposite position, (2) seek it, (3) get its token

>> opposite_pos = length_v2 - indices - 1;
s—op: opposite pos
Example: opposite pos () = (1nts)
>> sel_flip = select(indices, opposite_pos, ==);
selector: sel flip
Example:

130

Small RASP exercises

7. Reverse

Target: flip input sequence, e.g. “abc” — “cba”

Solution: (1) compute opposite position, (2) seek it, (3) get its token

>> opposite_pos = length_v2 - indices - 1;
s—op: opposite pos

Example: opposite pos (nana'") = , 4, 3, 2, 1 (ints)
>> sel _flip = select(indices, opposite_pos, ==);
selector: sel flip
Example:

>> reverse = aggregate(sel_flip, tokens);
S—0p: reverse
Example: reverse ("banana") = [a, n, a, n, a, bl (strings)

131

132

Small RASP exercises

Reverse - comparison with trained transformer

>> sel_all = select(1, 1, ==);
selector: sel_all
Example:

a|111111
>> mark_zero = indicator(indices==0);
s—op: mark_zero
Example: mark_zero ("banana") = [1, @, @, 0, 0, 0] (ints)
>> inverted_length = aggregate(sel_all, mark_zero);
s—-op: inverted_length
Example: inverted_length ("banana") = [0.167]%6 (floats)
>> length_v2 = round(l1/inverted_length);
s—op: length_v2
Example: length_v2 ("banana") = [6]%6 (ints)
>> opposite_pos = length_v2 - indices - 1;
s—-op: opposite_pos
Example: opposite_pos ("banana") = [5, 4, 3, 2, 1, 0] (ints)
>> sel_flip = select(indices, opposite_pos, ==);
selector: sel_flip
Example:

b |
a | 1
n | 1
a |
n | 1
a | 1
>> reverse = aggregate(sel_flip, tokens);
S—op: reverse

Example: reverse ("banana") = [a, n, a, n, a, bl (strings)

Test:

Training small transformers on lengths 0-100:

2 layers: 99.6% accuracy after 20 epochs
1 layer: 39.6% accuracy after 50 epochs

Bonus: the 2 layer transformer’s attention patterns:

Layer 1 (sel_all)

Layer 2 (sel_flip)

—1 1.0

- 0.8

0.6

0.4

0.2

0.0

Small RASP exercises

8. Count “a”’s

Target: count “a”’s, e.g. “abc” — [1, 1, 1]

Small RASP exercises

8. Count “a”’s

Target: count “a”’s, e.g. “abc” — [1, 1, 1]

Solution: (1) focus on all (2) send 1 from “a”’s and 0 from others, (3) average,
and multiply by length

134

>> sel all = select(1, 1, ==);
selector: sel all

Small RASP exercises

8. Count “a”’s

Target: count “a”’s, e.g. “abc” — [1, 1, 1]

Solution: (1) focus on all (2) send 1 from “a”’s and 0 from others, (3) average,
and multiply by length

135

>> sel all = select(1, 1, ==);
selector: sel all

Small RASP exercises

8. Count “a”’s

Target: count “a”’s, e.g. “abc” — [1, 1, 1]

Solution: (1) focus on all (2) send 1 from “a”’s and O from others, (3) average,
and multiply by length

>> a_indicator = indicator(tokens=="a"):
s—op: a _1ndicator
Example: a _indicator ("banana") = -1, 9, 1, 0, 1] (ints)

136

137

Small RASP exercises

8. Count “a”’s

Target: count “a”’s, e.q.

Solution: (1) focus on all (2) send 1 from

and multiply by length

>> a_indicator = indicator(tokens=="a");
a 1ndicator
a 1ndicator ("banana" 9,
>> frac_as = aggregate(sel_all, a_indicator);

S—0p:

Example:

s—op: frac _as

Example:

frac as

“abc” » [1, 1, 1]

("banana'

)

>> sel all = select(1, 1, ==);
selector:
Example:

(floats)

sel all

(ints)

s and O from others, (3) average,

>> sel all = select(1, 1, ==);
selector: sel all

Small RASP exercises

8. Count “a”’s 111111

Target: count “a”’s, e.g. “abc” —» [1, 1, 1]

Solution: (1) focus on all (2) send 1 from “a”’s and 0 from others, (3) average,
and multiply by length

>> a_indicator = indicator(tokens=="a");:
s—op: a_1ndicator
Example: a _indicator ("banana") = [0, 1, 0, 1, 0, 1] (ints)
>> frac_as = aggregate(sel_all, a_indicator);
s—op: frac _as
Example: frac_as ("banana") = [0.5]%6 (floats)
>> num_as = round(frac_as x length v2);
S—Op: num_as
Example: num_as ("banana") = [3]x6 (ints)

138

Medium RASP exercises

9. In place histogram

Target: mark each token with its frequency, e.qg: [a, b, a] ~ [2, 1, 2]

Medium RASP exercises

9. In place histogram

Target: mark each token with its frequency, e.qg: [a, b, a] ~ [2, 1, 2]

Solution (v1, like counting “a’s): (1) look at all tokens, (2) send 1 from token
being counted, 0 from others, ... 77?7 wait... different positions are counting
different tokens. Who sends 1 and who sends 0?

140

Medium RASP exercises

9. In place histogram

Target: mark each token with its frequency, e.qg: [a, b, a] ~ [2, 1, 2]

Solution (v1, like counting “a’s): (1) look at all tokens, (2) send 1 from token
being counted, 0 from others, ... 77?7 wait... different positions are counting
different tokens. Who sends 1 and who sends 0?

Solution (v2, like length_v2): (1) look at tokens being counted, (2) send 1 from
only one position, ...

141

Medium RASP exercises

9. In place histogram

Target: mark each token with its frequency, e.qg: [a, b, a] ~ [2, 1, 2]

Solution (v1, like counting “a’s): (1) look at all tokens, (2) send 1 from token
being counted, 0 from others, ... 77?7 wait... different positions are counting
different tokens. Who sends 1 and who sends 0?

Solution (v2, like length_v2): (1) look at tokens being counted, (2) send 1 from
only one position, ...

can mark first instance of each token as the one position

142

Medium RASP exercises

9. In place histogram

Target: mark each token with its frequency, e.qg: [a, b, a] — [2, 1, 2]

Solution (v1, like counting “a’s): (1) look at all tokens, (2) send 1 from token
being counted, 0 from others, ... 77?7 wait... different positions are counting
different tokens. Who sends 1 and who sends 0?

Solution (v2, like length_v2): (1) look at tokens being counted, (2) send 1 from
only one position, ...

can mark first instance of each token as the one position

but there’s something more generalisable...!

143

Medium RASP exercises

9. In place histogram

Target: mark each token with its frequency, e.qg: [a, b, a] — [2, 1, 2]

Solution (v1, like counting “a’s): (1) look at all tokens, (2) send 1 from token
being counted, 0 from others, ... 77?7 wait... different positions are counting
different tokens. Who sends 1 and who sends 0?

Solution (v2, like length_v2): (1) look at tokens being counted, (2) send 1 from
only one position, ...

can mark first instance of each token as the one position

but there’s something more generalisable...!

Force 0 as the one position, and correct for it after (singular check at pos. 0)

144

Medium RASP exercises

9. In place histogram

Target: mark each token with its frequency, e.g: [a, b, a] — [2, 1, 2]
Solution:

1a) look at same tokens,

1b) AND at pos. 0,

2) send 1 only from O,

3) average and invert,

4) get token at 0,

5) correct for pos. 0

145

Medium RASP exercises

9. In place histogram

Target: mark each token with its frequency, e.g: [a, b, a] — [2, 1, 2]

Solution: - = select(tokens, tokens, ==)

selector: same

Example:

1a) look at same tokens,

1b) AND at pos. 0,

(
(
(2) send 1 only from O,
(3) average and invert,
(4) get token at 0O,
(5) correct for pos. O

146

Medium RASP exercises

9. In place histogram

Target: mark each token with its frequency, e.g: [a, b, a] — [2, 1, 2]

- . >> same_or_0 = select(tokens, tokens, ==) or select(indices, 0, ==);
SOIUtlon' selector: same or 0
Example:

1a) look at same tokens,

1b) AND at pos. 0,

(
(
(2) send 1 only from O,
(3) average and invert,
(4) get token at 0O,
(5) correct for pos. O

147

Medium RASP exercises

9. In place histogram

Target: mark each token with its frequency, e.g: [a, b, a] — [2, 1, 2]

- . >> same_or_0 = select(tokens, tokens, ==) or select(indices, 0, ==);
SOIUtlon' selector: same or 0
Example:

1a) look at same tokens,

1b) AND at pos. 0,

(
(
(2) send 1 only from O,
(
(
(

)
3) average and invert,
4) get token at 0,
5) correct for pos. 0

148

Medium RASP exercises

9. In place histogram

Target: mark each token with its frequency, e.g: [a, b, a] — [2, 1, 2]

- . >> same_or_0 = select(tokens, tokens, ==) or select(indices, 0, ==);
SOIUtlon' selector: same or 0
Example:

1a) look at same tokens,

1b) AND at pos. 0,

2) send 1 only from O,

)
3) average and invert,
4) get token at 0,
5) correct for pos. 0

149

Medium RASP exercises

9. In place histogram

Target: mark each token with its frequency, e.g: [a, b, a] — [2, 1, 2]

- . >> same_or_0 = select(tokens, tokens, ==) or select(indices, 0, ==);
SOIUtlon' selector: same or 0
Example:

1a) look at same tokens,

1b) AND at pos. 0,

2) send 1 only from O,

>> inverse_with_© = aggregate(same_or_0, indicator(indices==0));
s—op: 1nverse_with_©

)
3) average and invert,
4) get token at 0,
5) correct for pos. 0

150

Medium RASP exercises

9. In place histogram

Target: mark each token with its frequency, e.g: [a, b, a] — [2, 1, 2]

= . >> same_or_0 = select(tokens, tokens, ==) or select(indices, 0, ==);
SOIUtlon' selector: same_or_©
Example:

1a) look at same tokens,

1b) AND at pos. 0,

>> inverse_with_© = aggregate(same_or_0, indicator(indices==0));
s—op: 1nverse_with_©
Example: inverse _with_0 () = | ‘ 1 {floats)
>> hist_with_©0 = round(l1/inverse_with _0);
s—op: hist with_0

get tOken at O, >> val_at_0 = aggregat;(selgct(indices, @, ==), tokens);
s—op: val_at_o

Example: val at O ("banana b (strings)

(
(
(2) send 1 only from O,
(
(
(

)

3) average and invert,
)
)

5) correct for pos. O

151

Medium RASP exercises

9. In place histogram

Target: mark each token with its frequency, e.g: [a, b, a] — [2, 1, 2]

- . >> same_or_O = select(tokens, tokens, ==) or select(indices, 0, ==);
SOIUtlon' selector: same or ©
Example:
(1a) look at same tokens,
(1b) AND at pos. O,
(2) Send 1 Only frOm O’ >> inverse with 0 = aggregateg(s:ame_Or_@:, indicator(indices==0));
s—-op: 1nverse_with_0
. Example: inverse with_© ("banana") = [1 25 33 2 337 25] (floats)
(3) average and Invertv >> hist_with_©0 = round(l1/inverse_with _0);
s—op: hist_with_©
Example: hist_with_© ("banana") = [1, 4, : e] (1ints)
(4) Qet tOken at O, >> val_at_0 = aggregate(select(indices, 9, ==), tokens);
s—op: val_at_@©
(9) correct for pos. O Y s T R P T P P P B TR

s—op: histogram

Example: histogram ("banana" [1 2.3, 2. 3] vints)
152

Medium RASP exercises
10. Selector width

Target: compute how many positions are chosen in each row of a selector

153

Medium RASP exercises
10. Selector width

Target: compute how many positions are chosen in each row of a selector
Solution: generalisation of histogram solution:

1a) look at same-tekens given selector,

1b) AND at pos. 0,

(
(
(2) send 1 only from O,
(3) average and invert,
(

4) gettokenato
get 1 iff selector hits 0O,

154 (5) correct for pos. 0

Medium RASP exercises
10. Selector width

Target: compute how many positions are chosen in each row of a selector

Solution: generalisation of histogram solution:
1a) look at sarmetokens given selector,

1b) AND at pos. 0,
Library function in RASP

>> histogram = selector_width(select(tokens, tokens, ==));
_ s—op: histogram
3) average and invert, Example: histogram) - (ints)
>> count_as = selector_width(select(tokens,"a",==));
S—0op: count_as

4) gettokenato 2l - (ints)
>> running_histogram = selector_width(select(tokens, tokens,==) and select(indices,indices,<=));

s—op: running_histogram
Example: running_histogram() = (ints)

(
(
(2) send 1 only from O,
(
(

get 1 iff selector hits 0O,

155 (5) correct for POS. 0 https://github.com/tech-srl/RASP/blob/main/RASP_support/rasplib.rasp

Medium RASP exercises
11. Sorting

Target: sort arbitrary
seqguence of values, e.q.

dkhs — dhks

Solution:

156

Medium RASP exercises
11. Sorting

Target: sort arbitrary
seqguence of values, e.q.

dkhs — dhks

Solution: each token
finds all tokens smaller
than itself, input position
IS used as a tie-breaker.
Counting these gives us
that token’s order, I.e.,
its final position in the
sorted sequence

157

158

Medium RASP exercises

11. Sorting

Target: sort arbitrary
seqguence of values, e.q.

dkhs — dhks

Solution: each token
finds all tokens smaller
than itself, input position
IS used as a tie-breaker.
Counting these gives us
that token’s order, I.e.,
its final position in the
sorted sequence

>> sel smaller = select(tokens, tokens, <);
selector: sel smaller
Example:

159

Medium RASP exercises

11. Sorting

Target: sort arbitrary
seqguence of values, e.q.

dkhs — dhks

Solution: each token
finds all tokens smaller
than itself, input position
IS used as a tie-breaker.
Counting these gives us
that token’s order, I.e.,
its final position in the
sorted sequence

>> sel smaller = select(tokens,

selector: sel smaller
Example:

>> sel _earlier_equal = select(tokens,
selector: sel earlier equal
Example:

tokens, <);

tokens, ==) and select(indices,

indices,

<);

Medium RASP exercises
11. Sorting

>> sel smaller = select(tokens, tokens, <);
selector: sel smaller

Target: sort arbitrary e

seqguence of values, e.q.

dkhs — dhks

Solution: eaCh token >> seigiziéif_:gtljaia?liziec;;é;clnkens, tokens, ==) and select(indices, indices, <);
finds all tokens smaller Example:

than itself, input position

IS used as a tie-breaker.

Counting these gives us _ ‘

that tOken,S Order, Ie! >> order = selector_width(sel_smaller or sel_earlier_equal);

its final position in the R e arlet oxdec(*banana®) = 13 5. 2 2 & 21 ints)

sorted sequence

160

161

Medium RASP exercises
11. Sorting

>> sel smaller = select(tokens,

selector: sel smaller

Target: sort arbitrary e

sequence of values, e.qg.

dkhs — dhks

Solution: each token > selgertier-eauel = select (tokens.

finds all tokens smaller Example:

than itself, input position

IS used as a tie-breaker.

Counting these gives us w)

that tOken,S Ordera Ie! >> order = selector_width(sel_smaller or sel_earlier_equal);
its final position in the O order(banana:

sorted sequence

s—op: sorted

Example: sorted("banana"

tokens,

tokens, ==) and select(indices,

(ints)

>> sorted = aggregate(select(order, indices,» , tokens);

(strings)

indices,

<);

Medium RASP exercises
11. Sorting

>> sel smaller = select(tokens, tokens, <);
selector: sel smaller

. xample:
Target: sort arbitrary e banane
sequence of values, e.qg. -l
dkhs — dhks S
Solution: eaCh token >> Seigi:g%iiffglﬁiajlig%fg;ézcl)kens' tokens, ==) and select(indices, indices, <);
finds all tokens smaller Example:
than itself, input position - .
< used asa’fi)e—beeaker What does this mean for

. . ' linear transformers?
Counting these gives us |1
that tOken,S Ordera Ie, >> order = selector_width:(sel_sglall(_er or sel _earlier_equal);
i i T i s—op: order
ItS flnal pOSItlon IN the pExample: order("banana") = [3, 0, 4, 1, 5, 2] (ints)
Sorted Sequence >> sorted = aggrggate(select(order, indices, ==), tokens);
S—0p: Ssorte
pExample: sorted("banana") = [a, a, a, b, n, n] (strings)

162

Multi Hop Reasoning

High level discussion

In parameters

David

David Redundancy!

1T alelg A Te) [(Vo 2Nl <« {(Ben,sister): Sally,
(Sally, husband): David,

- Sally’s husband? -}

TR g\A (efe] (Vo lu Bl «— {(Ben,sister): Sally,
(Sally, husband): David,
L)

ini’ial processing

Ben'’s sister’s husband?

163

164

Multi Hop Reasoning

High level discussion

In parameters

David

David Redundancy!

memory Iookup 2288l «— {(Ben,sister): Sally,
(Sally, husband): David,

- Sally’s husband? -}

TR g\A (efe] (Vo lu Bl «— {(Ben,sister): Sally,

)

ini‘ial p-ocessing

Ben’s sister’s husband?

(Sally, husband): David,

“Circuit” observed:

Grokked transformers are implicit
reasoners: a mechanistic journey
to the edge of generalization

Wang et al, 2024

Redundancy observed:

Discovering knowledge-critical
subnetworks in pretrained
language models

Bayazit et al, 2024

seed-735 ___

seed-1318

seed-84

Multi Hop Reasoning

High level discussion

In context

David

David

Q: (Sally, husband context lookup 2

- Sally’s husband?

Q: (Ben, sister) 1 —— JIele]ai =Y. (Ml [eTe] (Vo J4

initial processing

Ben’s sister: Sally. Sally’s husband: David. Ben’s sister’s husband?
K: (Ben, sister) K: (Sally, husband)

165 V: Sally V: David another solution (builds up descriptions in place): https://github.com/tech-srl/RASP/blob/main/rover.rasp

Multi Hop Reasoning

High level discussion

Benefits of memory over context:

RECKONING: Reasoning through
dynamic knowledge encoding

Chen et al, 2023

In context

Training on 2-hop Questions

David B RECKONING MFT-ICR

99.5 99.4
David /

Lot of detail needed in
Q: (Sally, husband context lookup 2 the queries and keys...

100 -

i 94.1
88.9 89.8 89.5
i 80.6 78.9 79.8
I I I 62-7
0 2 4 6 all

Number of Distractors

00
o

Label Accuracy (%)
()]
o

S
o

Makes finding relevant

- Sally’s husband? facts and rules harder? Training on 5-hop Questions

B RECKONING @FT-ICR
99.8 99.6

100 T %0941 939
88.9 91.5
g5 840
1 I I 77.2
40 - I
0 2 4 6 all

Number of Distractors

Q: (Ben, sister) 1 —— JIele]ai =Y. (Ml [eTe] (Vo J4

0
o

Label Accuracy (%)
3

initial processing

Ben’s sister: Sally. Sally’s husband: David. Ben’s sister’s husband?
K: (Ben, sister) K: (Sally, husband)

166 V: Sally V: David another solution (builds up descriptions in place): https://github.com/tech-srl/RASP/blob/main/rover.rasp

Long addition walkthrough:

Thinking Like Transformers
ICLR 2023 Blog Track

https://srush.github.io/raspy/

RASP REPL
github.com/tech-srl/RASP

(or email me if you can’t get on github)

RASP itself:
Thinking Like Transformers
ICML 2021
Tracr (Partial RASP compiler) Learning Transformer Programs

Lindner et al, NeurlPS 2023 Friedman et al, NeurlPS 2023
167

http://github.com/tech-srl/RASP
https://srush.github.io/raspy/

