The primitive of semantics in human infants and baboons (*Papio papio*)

Isabelle Dautriche

CNRS & Aix-Marseille University

16/10/2024

Languages differ at all levels (sounds, words, grammar)

But they also share important similarities:

- Architecture: symbolic systems that combine the same units to convey an infinity of meanings.
- Statistical tendencies (e.g., SO preference)

General challenge

Why do languages look the way they are?

- Features of our cognition (general learning mechanisms, memory)
- Language-specific constraints
- Language function (communication)
- External factors (geography, language contact, history)

General challenge

Why do languages look the way they are?

- Features of our cognition (general learning mechanisms, memory)
- Language-specific constraints
- Language function (communication)
- External factors (geography, language contact, history)

Evidence comes from:

- Typological data
- (rarely) experimental work with human adults

Cognitive foundations

Why do languages look the way they are?

- New sources of evidence to investigate the cognitive foundations of meaning
 - > in human infants
 - > in non-human animals

Roadmap

Evidence for the existence of cognitive foundations

- 1. Lexical meanings
- 2. Composititionality
- 3. Word order

Roadmap

Evidence for the existence of cognitive foundations

- 1. Lexical meanings
- 2. Compositionality
- 3. Word order

Connectedness: A constraint on lexicons

The meaning a word is generally connected (convex): If

a is a blicket

c is a blicket

b is 'between' *a* and *c*

Then

b is also a blicket

No 'gaps' in the meaning of words

Connectedness: cross-linguistically

No (content) word means: 'dog or mushroom' 'table or sofa' 'blue or red'

Xu & Tenenbaum, 2007

Xu & Tenenbaum, 2007

Xu & Tenenbaum, 2007

Xu & Tenenbaum, 2007

Dautriche & Chemla, 2016; Dautriche, Chemla & Christophe, 2016

Connectedness: A constraint on lexicons

Connectedness may be an active constraint during language acquisition:

- \rightarrow learners would be biased to search for connected meanings
- \rightarrow a bias that would translate at the level of the lexicon

Can the roots of humans' bias for connectedness be found independently of language ?

 \rightarrow Focus on **non-human animals** and **logical words** (quantifiers) Examples of connected quantifiers: more than 5, between 3 and 5 Examples of non-connected quantifiers: 3 or 7, outside of 3 and 5

Connectedness for logical words: Baboons

CNRS primate centre –Rousset

N = 25 Baboons *Papio papio*

Connectedness for logical words: Baboons

Task: Learn a quantifier-like rule.

- Participants categorize each display and receive feedback
- Displays containing circles characterized by the proportion of color

	0%	20%	40%	60%	80%	100%
Monotone	Α	А	А	В	В	В
Connected	В	В	А	А	А	В
Non-connected	В	А	А	В	В	Α

Chemla, Dautriche, Buccola & Fagot, 2019

Connectedness for logical words: Baboons

N = 14 Within-subject design

Baboons find easier to learn connected patterns than nonconnected patterns

Chemla, Dautriche, Buccola & Fagot, 2019

Lexical meanings: summary

The bias for connectedness may have non-linguistic roots

Important consequences:

 \rightarrow at the level of the lexicon: general constraint on meanings

 \rightarrow For learning: connectedness reduces the number of hypotheses for a word

 \rightarrow A (justified) prior in word learning models

Future: extend this approach to other lexical properties \rightarrow conservativity (but see Spenader & de Villiers, 2019)

Roadmap

Evidence for the existence of cognitive foundations

- 1. Lexical meanings
- 2. Compositionality
- 3. Word order

Roadmap

Evidence for the existence of cognitive foundations

- 1. Lexical meanings
- 2. Compositionality
- 3. Word order

Compositionality in infancy

Can infants compose mental representations?

Compositionality in infancy

As if 9-month-old infants expect only the second transformation to have applied

→ Computational limitations

1+1+1 fails 2+1 succeeds (Moher, Tuerk, & Feigenson, 2012, Baillargeon, Miller, & Constantino, 1994)

→ Computational limitation or task difficulty?

Piantadosi, Palmeri & Aslin, 2019

Compositionality: summary

12-month-old infants can compose mental representations

Compositionality in animals

 \rightarrow Compositionality in animal communication appears limited

Coye et al., 2016; Arnold and Zu

 \rightarrow Compositionality in tra

SANCE

limited

Compositionality in animals

\rightarrow Compositionality elsewhere appears limited

 \rightarrow Task complexity or computational limitation?

Compositionality in baboons

Task: Learn cue-object associations

Incorrect composition

• Atomic cues

 \rightarrow identity

Compositional cues

 (atomic cue + visual "negative morpheme")
 → complement set

Dautriche, Buccola, Berthet, Fagot & Chemla (2022)

Compositionality in baboons

Task: Learn cue-object associations

Incorrect composition

Dautriche, Buccola, Berthet, Fagot & Chemla (2022)

Compositonality: summary

9-month-old infants can compose mental representations Baboons can respond to negation-like* operators <t, t>

Important consequences:

 \rightarrow evidence that mental representations can compose in the absence of language

 \rightarrow evidence is limited to a single logical connective* and to a single domain (physics)

Roadmap

Evidence for the existence of cognitive foundations

- 1. Lexical meanings
- 2. Compositionality
- 3. Word order

Roadmap

Evidence for the existence of conceptual preconditions

- 1. Lexical meanings
- 2. Compositionality
- 3. Word order

Recurrent word order patterns across languages example: noun phrase ordering (N, Adj, Num, Dem)

English: these two purple horsesThai:horses purple two these

Greenberg, 1963; Dryer, 2018; Culbertson et al, 2020

Recurrent word order patterns across languages example: noun phrase ordering (N, Adj, Num, Dem)

From Culbertson et al., 2020

Greenberg, 1963; Dryer, 2018; Culbertson et al.

Recurrent word order patterns across languages example: noun phrase ordering (N, Adj, Num, Dem)

Theory: a common underlying structure reflecting the order of compositional operations

Corroborating evidence in linguistic humans

(Culbertson & Adger, 2014; Martin et al., 2019, 2020)

What is the origin of that underlying structure? Hypothesis: ordering preferences might be detected in nonlinguistic populations

A simpler (true) universal test case:

"a purple horse and a banana" -> purple-horse-banana "un cheval violet et une banane" -> horse-purple-banana But in *no* language: horse-banana-purple

Word order: summary

Baboons decompose objects into their features & report their responses in a compositional order

Important consequences:

→ This suggests a natural syntax of concepts rooted in non-linguistic mental representations

→ More evidence for compositionality

Future work: Getting closer to NP ordering

Word order: agent-patient

Languages tend to describe who is doing what to whom by placing agents before patients (99% of languages are SO)

A natural semantic organization of events?

Human adults tend to place agents before patients in nonverbal descriptions

...that may come from attentional preferences

Rochat et al., 2004; Meyerhoff et al., 2014, Yin & Csibra, 2015; Galazka & Nyström, 2016; Galazka et al., 2016

Word order	English equivalent	Proportion of languages		
SOV	"She him loves."	45%		
svo	"She loves him."	42%		
vso	"Loves she him."	9%		
VOS	"Loves him she."	3%	I	
OVS	"Him loves she."	1%]	
OSV	"Him she loves."	0%		

Wikipedia from Russel, 2009

Goldin-Meadow et al., 2008

Word order: agent-patient

Task: change detection paradigm

Detect and tap the object that changed colour, measure the response time

Floor Meewis

Chasing

Object 1 = chasee = patient Object 2 = chaser = agent

Control: No interaction

Object 1 = "chasee-like" Object 2 = "chaser-like"

Control: Following

Object 1 = leader = agent Object 2 = follower = patient

Word order: agent-patient

Agent-patient: summary

Baboons show an agent preference in chasing interactions

Important consequences:

- \rightarrow similar attentional preferences in humans and baboons
- \rightarrow beyond chasing?
- \rightarrow from attention to representation?

Future work:

 \rightarrow How much of language/word order patterns could come from nonlinguistic event representation?

Gleitman, 1990 Slobin 1973 Wilson, Zuberbuhler & Bickel, 2022

General summary

Why do languages look the way they are?

1. Lexical meanings

Baboons manipulate 'concepts' of the same shape as ours (i.e., connected)

2. Compositionality

Infants can compose mental representations

Baboons can respond to negation-like operators <t, t>

3. Word order

Baboons report responses in a "compositional" manner (adj-N)

Baboons shows an agent bias consistent with the prevalent SO order

General summary

Why do languages look the way they are?

 \rightarrow Some properties of language may stem from attentional and perceptual processes and the mental representations that result from them (connectedness, compositionality, word order)

 \rightarrow Sure, not all of language may be found in other species but the question is **how much** of language

 \rightarrow Comparative approach: a necessary step in order to understand the evolution of the language capacity

Thank you!

Joint work with:

Joel

Joel Fagot

Claidière

Melissa Berthet

Brian Buccola

Jennifer Culbertson

Floor Meewis

