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Natural Language as an Information-Theoretic Code

3 Claude Shannon (1948). A mathematical theory of communication. Bell System Technical Journal.
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Goals Today
• Develop and test models of language comprehension and language 

production based on maximizing efficiency subject to constraints.


• Show that a bottleneck on memory yields detailed patterns of 
comprehension difficulty for nested clauses.


• Show that a bottleneck on control yields accessibility effects in 
incremental production of words.


• On both sides, a predictive language model ends up playing a central 
role.



Outline

• Introduction


• Information Theory for Language Processing


• Memory Bottleneck in Language Comprehension


• Control Bottleneck in Language Production


• Conclusion
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• The children came inside to…

What is Information?
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• The amount of information in a word (or anything!) depends on how 
surprising it is in context.


• Information content is  
quantified as surprisal:


• S(word | context) =  
-log2 P(word | context)  
(measured in bits)


• Surprisal is also the length 
of the shortest binary 
representation that  
encodes the word in context. 

Basic Information Theory: Surprisal
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A Closer Look at Surprisal
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The children went outside to play…

Information content of play in context 
S(play | context)

Remaining information 
content of the word

Mutual information between 
word and context

A Closer Look at Surprisal



Information Theory in Psycholinguistics
• Surprisal Theory: (Hale, 2001; Levy, 2008; Smith & Levy, 2013)


• RT(word | context) = k S(word | context).


• Idea: Each bit of information content takes a 
fixed time for processing.



Information Theory in Psycholinguistics
• Surprisal Theory: (Hale, 2001; Levy, 2008; Smith & Levy, 2013)


• RT(word | context) = k S(word | context).


• Idea: Each bit of information content takes a 
fixed time for processing.


• Surprisal theory and variants have high 
predictive value for reading times and N400 
signals (Smith & Levy, 2013; Frank & Bod, 2011; Frank, 2016; Wilcox et 
al., 2020; Shain, 2019; Li & Futrell, 2022)


• Predicts classic garden path effects, although 
underestimating effect size (Hale, 2001; Levy, 2008; but see 
van Schijndel & Linzen, 2022)

Smith & Levy (2013)
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Surprisal and Language Models
• Optimal representations are based on a predictive language model 

• Fitting a language model to predict words in context is equivalent to 
finding optimal compressed representations of words in context. 

• What do you get if you train a giant neural network to minimize surprisal?

S(word | context) = -log P(word | context)  



Information Theory and Language Processing

• Surprisal Theory is a good start, but…


• It does not account for memory limitations, and often 
underestimates reaction times.


• It does not say anything about how linguistic structure interacts 
with processing difficulty.


• It’s not clear what it has to say about production.


• What happens when we consider optimal representations under 
cognitive constraints?



Outline

• Introduction


• Basics of Information-Theoretic Psycholinguistics


• Memory Bottleneck in Language Comprehension


• Control Bottleneck in Language Production


• Conclusion

Michael Hahn Ted Gibson Roger Levy



• Bob threw out the trash. 👍

• Bob threw the trash out. 👍

• Bob threw out the old trash that had been sitting in the kitchen. 👍

• Bob threw the old trash that had been sitting in the kitchen out. 👎

Memory Effects in Sentence Processing
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The Dependency Locality Theory (Gibson, 1998, 2000)



18 Bartek et al. (2011)



• The apartment was well-decorated. 

• The apartment that the maid cleaned was well-decorated. 

• The apartment that the maid who the service sent over cleaned was well-decorated.

Memory Effects in Sentence Processing
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👍

👎👎👎👎👎

👍

RT trouble starts here

Vasishth et al. (2010)



Memory in Language Comprehension

Word

Memory State

The children went…
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How to fit a memory bottleneck into Surprisal Theory?

The apartment that the maid who the service sent over cleaned

context xmemory representation

• Surprisal: RT(w | context) = S(w | context)

context next word

prediction

objective 
context

memory 
representation

prediction

Futrell, Gibson & Levy (2020)

• Lossy-context surprisal: RT(w | context) = S(w | memory representation)



Lossy-Context Surprisal
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The maid cleaned…

Objective surprisal: S(cleaned | The maid)

Processing difficulty is  
the number of unpredictable 
bits.

Lossy-context surprisal: S(cleaned | memory)

Memory cost 
due to memory  
limitations

Bits predictable 
given the
memory state

S(word | memory) = S(word | context) + Memory cost



Uses of Lossy-Context Surprisal

• By constraining memory in various ways, 
we can account for…

• Certain dependency locality effects 

(Futrell, Gibson & Levy, 2020)

• Cross-linguistic patterns in structural 

forgetting (Futrell, Gibson & Levy, 2020) 


• General reading times in eyetracking 
corpora, with neural network 
implementation (Kuribayashi et al., 2022)


• Novel patterns in comprehension of 
nested clauses. (Hahn, Futrell, Levy & Gibson, 
2022)



Processing with Constrained Memory

• Idea: Only a certain maximum number of words can be retained in 
memory. 


• Predictions about upcoming words are optimal subject to the 
constraint that not all context words can be represented.

Hahn, Futrell, Levy & Gibson (2022)

Context 
The report that the doctor annoyed the patient… was interesting



• Idea: Only a certain maximum number of words can be retained in 
memory. 


• Predictions about upcoming words are optimal subject to the 
constraint that not all context words can be represented.

Hahn, Futrell, Levy & Gibson (2022)

Lossy Context 
The report ??? the doctor annoyed the patient…

⥇ was interesting
→ was interesting

Processing with Constrained Memory



Predictions about Embedded Clauses

Low Embedding Bias

High Embedding Bias

• Prediction: The difficulty of multiple embedding depends on the 
embedding bias of the noun.



Predictions about Embedded Clauses

• Prediction: The difficulty of multiple embedding depends on the 
embedding bias of the noun.



Model Implementation



Reading Time Experiment Results



Memory Bottleneck in Language Comprehension

• We considered language comprehension 
difficulty based on surprisal given a lossy 
memory representation of context.


• Predicts RT better than a less 
constrained language model.


• Comprehension can be modeled as 
maximally efficient subject to memory 
constraints.



Outline

• Introduction


• Basics of Information-Theoretic Psycholinguistics


• Memory Bottleneck in Language Comprehension


• Control Bottleneck in Language Production


• Conclusion



Information Theory and Language Production
• Information-theoretic models of language processing have mostly focused 

on comprehension.


• What can we say about production? 

Intent/ 
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From Comprehension to Production

Word

Memory State

Communicative 
Goal



Goal

Word

State

Picture of Language Production

the=
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cat ∼ P( ⋅ ∣ g, s) (Policy)
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Optimization Problem for Language Production

Goal

State

• Idea: You can only use so much information 
about the goal per word, due to a constraint on 
cognitive control.  


• Cognitive control operates under a 
bandwidth constraint: 50 bits/ms (Fan, 2014; 
Zénon et al., 2019)


• So, find a policy that


• Maximizes communicative accuracy  

• Subject to a constraint on the mutual 
information of g with x in each timestep.

α
Word

Futrell (2023)



Constrained Optimal Policy

• A word is produced if…


• It is low surprisal given the memory state.


• It is communicatively accurate.


• The trade-off of these factors is controlled by the 
bandwidth of cognitive control, α.

Surprisal
 

Policy Control Signal
P(word ∣ goal, state) ∝ exp {log P(word ∣ state)+αu(word ∣ goal, state)}Goal

State

α
Word

Futrell (2023)



Uses of the Rate-Distortion Theory of Control
• We can use this production model to 

explain…

• Frequency and semantic interference 

effects in word production (Futrell, 2020; 
Futrell, 2023, PNAS)


• Semantic substitution errors (Upadhye & 
Futrell, 2022) and use of filled pauses 
(Futrell, 2023, PNAS)


• Accessibility effects in use of optional 
complementizers in English (Futrell, 2023, 
CogSci)


• Accessibility effects in use of 
Mandarin classifiers (Futrell, 2023, CogSci)

Goal

State

α
Word



Mandarin Classifiers
• In certain phrases, Mandarin nouns must be preceded by a classifier which 

can be either specific or generic.



An Accessibility Effect in Mandarin Classifiers



Mandarin Classifier Simulation
• Set up a toy language where every 

utterance consists of  
CLASSIFIER + NOUN, where CLASSIFIER 
can be generic or specific.


• N=200 different nouns, each assigned to 
one of 10 different specific classifiers.


• Probability distribution on nouns is Zipfian.


• Derive the constrained optimal policy.

P(word ∣ goal, state) ∝ exp {log P(word ∣ state)+αu(word ∣ goal, state)}
Favors generic classifier Favors specific classifier



Mandarin Classifier Result



Mandarin Classifier Result

• Production of specific 
classifier is rare when the 
model has uncertainty 
about which specific 
classifier it should use.


• Matches the intuitive idea 
of “accessibility.”



Control Bottleneck in Language Production
• An information-theoretic model captures 

accessibility-based production effects.


• A constrained optimal production policy ends up 
including a language model as a component… 
 
 

• Really, it’s a language model plus a reward model: 


• As in Reinforcement Learning from Human 
Feedback (RLHF)

α
P(word ∣ goal, state) ∝ exp {log P(word ∣ state)+αu(word ∣ goal, state)}
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• Introduction


• Basics of Information-Theoretic Psycholinguistics


• Memory Bottleneck in Language Comprehension


• Control Bottleneck in Language Production


• Conclusion



Natural Language as a Code
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Shannon (1948)
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Conclusion
• We can model language processing as optimal subject 

to constraints…


• On incremental memory.


• On control.


• Language models P(word | context) emerge as a key 
part of both comprehension and production.


• Comprehension: They define the information 
content of each word to be processed.


• Production: They emerge under a constraint on 
cognitive control.


• Information-theoretic psycholinguistics is an open field!
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