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Properties of the Linguistic System
What should be our targets of study?

• Some fundamental properties of language: 


• Productivity


• Compositionality


• Incremental Processing
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Properties of the Linguistic System

• Productivity


• The ability to produce or comprehend (a lot of) never before seen words and 
sentences.  


• Compositionality


• The meaning of sentences is built up from the meaning of words, and the way 
they are combined.


• Incremental Processing


• We interpret words as soon as we hear (or see) them using as much information 
as is available at the moment.
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Outline
• Productivity 

   Evaluating Distributional Distortion in Neural Language Modeling    

Synthesizing Theories of Human Language with Bayesian Program Induction 

• Compositionality and Incremental Processing                                                                        

Particle Filtering as a Model of Incremental Grounded Sentence Understanding 

The Plausibility of Sampling as an Algorithmic Theory of Sentence Processing
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Productivity
Massive but constrained generalization

• Productivity: the ability to produce and comprehend many words and sentences we have never 
encountered before (but only well-formed ones).


• Language is very productive.


• Number of easy-to-understand 10 word sentences likely in the billions (based on perplexity estimates).


• Number of easy-to-understand 15 word sentences likely in the trillions.


• Children probably only hear a few tens of millions of sentences by the time they speak.


• Nevertheless, well-formed sentences only a tiny fraction of possible sequences of words.


• Number of length 10 sequences of words could easily exceed 1030.


• The vast majority of never-before-seen sequences aren’t allowed.
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Productivity
Distributional corollary

• Productivity has an important distributional corollary: heavy-tailedness
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Productivity
Distributional corollary

A large number of infrequent 
utterances (most of which have never 

occurred)
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• Productivity has an important distributional corollary: heavy-tailedness



Heavy-Tailedness

• A large proportion of probability mass on never-seen events.


• Estimations/learning guarantees can be difficult in this regime.


• Most data is atypical.


• Evaluating the tail-behavior of models is also challenging.


• How can you test parts of the distribution you have never seen.
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Neural Language Models

• The most important class of AI models today.


• GPT-3, PaLM, LLaMA, etc.


• Language models: 


p(w1, …, wN) =
N

∏
i=1

p(wi ∣ w<i)
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Neural Language Models

• The most important class of AI models today (sorry, diffusion).


• GPT-3, PaLM, LLaMA, etc.


• Language models: 





• Neural language models:


p(w1, …, wN) =
N

∏
i=1

p(wi ∣ w<i)

p(w1, …, wN) =
N

∏
i=1

p(wi ∣ w<i) =
N

∏
i=1

eρwi(w<i;θ)

∑w′￼i
eρw′￼i

(w<i;θ)
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Neural Network

Usually a transformer.



Neural Language Models

• Evaluating the tail-behavior of neural LMs is challenging.


• We don’t know the true distribution of e.g. English sentences.


• Models often evaluated using perplexity, the average number of words 
predicted per position.


• Miss item-wise examination of tail items, i.e., hard to assess how 
productively the model is generalizing.
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Our Study

• Examine the generalization behavior of neural language models.


• Use a language generated from a known, artificial distribution on sequences, 
so we can study generalization for both common and rare events.


• Examine a variety of language models.


• Look at individual items, including items in the tail.


• Study the question of how the model is allocating probability mass in 
comparison to true distribution.
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Real 
sequences

❏ pL: the artificial language (a.k.a the target distribution)

❏ pM: the language model

❏ pL(x): the target sequence probabilities

❏ pM(x): the model sequence probabilities

Schematic representation of our evaluation scheme 21
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GPT2-small: Joint histogram of test 
sequence probabilities
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GPT2-small: Joint histogram of test 
sequence probabilities

LM sequence log 
probability 
estimate

Target (true) 
sequence log 

probability
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GPT2-small: Joint histogram of test 
sequence probabilities

LM sequence log 
probability 
estimate
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sequence log 

probability

pM(x) = pL(x)

: well-estimated sequence
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GPT2-small: Joint histogram of test 
sequence probabilities

LM sequence log 
probability 
estimate

Target (true) 
sequence log 

probability

pM(x) = pL(x)

LM underestimates pL(x) 

LM overestimates pL(x) 
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GPT2-small: Joint histogram of test 
sequence probabilities

LM sequence log 
probability 
estimate

Target (true) 
sequence log 

probability

pM(x) = pL(x)

LM underestimates pL(x) 

LM overestimates pL(x) 
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Estimation error

Target (true) sequence log probability
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LSTM underestimates the probability of the 
majority of the sequences drawn from the target 
language.

This underestimation is more severe for less 
probable target sequences.

LM underestimates pL(x) 

Model trained on 1M sequences sampled from the target distribution pL
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GPT2-medium underestimates the probability 
of the majority of the sequences drawn from the 
target language.

This underestimation is more severe for less 
probable target sequences.

LM underestimates pL(x) 

Model trained on 1M sequences sampled from the target distribution pL
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LM underestimates pL(x) 

- - - - : pM(x) = pL(x)

Estimation error by amount of training data
Sampling a fresh set of 500,000 sequences from the target distribution pLat each epoch

39



Assuming a proper distribution, underestimation suggests that there are sequences which are 
overestimated by the LM.

There are regions of sequence space with high probability sequence, the model places too little 
mass there, and places too much mass on improbable strings, i.e., it becomes unable to 
distinguish strings that pL can distinguish.

Where did the probability mass go?
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Summary

Neural language models tend to

1. underestimate the probability of sequences drawn from the target language, and do so 
more severely when such sequences are rare;

2. overestimate the probability of many sequences the target language assigns extremely 
low probability (analogous to ill-formed strings).

Overall, our findings indicate that neural LMs spread probability mass too uniformly over the 
space of possible sequences. They are too productive, failing to distinguish between low 
probability strings from the target language and extremely low probability strings in the target 
language. 

42



Outline
• Productivity: 


    Evaluating Distributional Distortion in Neural Language Modeling 

• Ben Lebrun and Alessandro Sordoni 


Synthesizing Theories of Human Language with Bayesian Program Induction. 

• Kevin Ellis, Adam Albright, Armando Solar-Lezama, and Josh Tenenbaum


43



Outline
• Productivity: 


    Evaluating Distributional Distortion in Neural Language Modeling 

• Ben Lebrun and Alessandro Sordoni 


Synthesizing Theories of Human Language with Bayesian Program Induction. 

• Kevin Ellis, Adam Albright, Armando Solar-Lezama, and Josh Tenenbaum


44



Outline
• Productivity: 


    Evaluating Distributional Distortion in Neural Language Modeling 

• Ben Lebrun and Alessandro Sordoni 


Synthesizing Theories of Human Language with Bayesian Program Induction. 

• Kevin Ellis, Adam Albright, Armando Solar-Lezama, and Josh Tenenbaum


45



Outline
• Productivity: 


    Evaluating Distributional Distortion in Neural Language Modeling 

• Ben Lebrun and Alessandro Sordoni 


Synthesizing Theories of Human Language with Bayesian Program Induction. 

• Kevin Ellis, Adam Albright, Armando Solar-Lezama, and Josh Tenenbaum


46



Morphology-Phonology Interactions
Overview
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Morphology-Phonology Interactions
Polish

klup klubi
dom domi
Zwup Zwobi
dzvon dzvoni
lut lodi
wuk wugi
sok soki
sul soli
trup trupi
trut trudi
grus gruzi
vus vozi
ruk rogi
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Root combines with /i/ to 
form plural.



Morphology-Phonology Interactions
Polish
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/o/ goes to /u/ before voiced 
final consonants.



Morphology-Phonology Interactions
Polish
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Final voiced consonants are 
devoiced.



Morphology-Phonology Interactions

• Picked this domain to study how effective, productive generalization can 
happen from tiny amounts of data.


• Our task: solve phonology textbook problems.

56

• ~70 problems from 58 languages

• Datasets very small

• Largest phonological dataset of its kind



Learning as Bayesian Program Induction
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Programming language

(Universal Grammar)

Phoneme Inventory

@, p, E, 2, k

a, 3, A, O, d

· · ·

Program space

M ! A|stem|M+M
P ! R �R � · · · �R

Feature space

voiced, vowel
obstruent, nasal

· · ·

Language-specific

morphophonology

Tibetan Morphology

Number!Factor+Ten

Tibetan Phonology

r1: C ! ? / C

Catalan Morphology

Masc Sg!stem
Fem Sg!stem+/@/

Catalan Phonology
r1: [-son] ! [-voice] / #
r2: [-son +voice] ! [+cont]

/ [+son -nasal] [+son]

Polish Morphology

singular! stem
plural! stem+ /i/

Polish Phonology

r1: o ! u / [-nasal +voice]#
r2: [-son] ! [-voice] / #

Observed data

Ten: bd
Z
u

Nine: rgu

10:
bd

Z
u

y

r1

d
Z
u

90:
rgubd

Z
u

y

r1

gubd
Z
u

lexicon:

10: d
Z
u

90: gubd
Z
u

empty: bwid

Masc Sg:
bwid

y

r1

bwit

y
r2

bwit

Fem Sg:
bwid@

y

r1

bwid@

y

r2

bwiD@

lexicon:

empty, Masc Sg: bwit

empty, Fem Sg: bwiD@

horn: rog

lexicon:

singular:
rog

y

r1

rug

y

r2

ruk

plural:
rogi

y

r1

rogi

y

r2

rogi

horn, singular: ruk

horn, plural: rogi

1
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Programming Language

60

• Morphology: Simple concatenative rules combining underlying forms of 
morphemes based on morphological function.


FUNCTION 1:      # prefix + stem + #

FUNCTION 2:      # + stem + #    


• Phonology: Ordered rules that transform resulting phone sequences.

input → output  / context _ context  



Programming Language
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Implications

• Most successful phonological rule learner published to date.


• In most cases, the model finds a correct analysis (i.e., consistent with 
linguistic analyses).


• Does so from “small data.”


• Many cases it gets partial solutions (not unlike students doing these problems 
sets).

65



Outline
• Productivity 

     Synthesizing Theories of Human Language with Bayesian Program Induction 

     Evaluating Distributional Distortion in Neural Language Modeling 

• Compositionality and Incremental Processing                                                                        

Particle Filtering as a Model of Incremental Grounded Sentence Understanding 

The Plausibility of Sampling as an Algorithmic Theory of Sentence Processing

66



Outline
• Productivity 

     Synthesizing Theories of Human Language with Bayesian Program Induction 

     Evaluating Distributional Distortion in Neural Language Modeling 

• Compositionality and Incremental Processing                                                                        

Particle Filtering as a Model of Incremental Grounded Sentence Understanding 

The Plausibility of Sampling as an Algorithmic Theory of Sentence Processing

67



Outline

• Compositionality and Incremental Sentence Processing                                                                            


   Particle Filtering as a Model of Incremental Grounded Sentence Understanding 

• Ben Lebrun, Amanda Doucette, Vikash Mansinghka, and Josh Tenenbaum


      The Plausibility of Sampling as an Algorithmic Theory of Sentence Processing 

• Jacob Hoover, Morgan Sonderegger, and Steve Piantadosi

68



Outline

• Compositionality and Incremental Sentence Processing                                                                            


   Particle Filtering as a Model of Incremental Grounded Sentence Understanding 

• Ben Lebrun, Amanda Doucette, Vikash Mansinghka, and Josh Tenenbaum


      The Plausibility of Sampling as an Algorithmic Theory of Sentence Processing 

• Jacob Hoover, Morgan Sonderegger, and Steve Piantadosi

69



Outline

• Compositionality and Incremental Sentence Processing                                                                            


   Particle Filtering as a Model of Incremental Grounded Sentence Understanding 

• Ben Lebrun, Amanda Doucette, Vikash Mansinghka, and Josh Tenenbaum


      The Plausibility of Sampling as an Algorithmic Theory of Sentence Processing 

• Jacob Hoover, Morgan Sonderegger, and Steve Piantadosi

70



Compositionality and Incremental Processing

• Compositionality: The meaning of sentences is built up from the meaning of 
words, and the way they are combined.
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Compositionality and Incremental Processing

• Compositionality: The meaning of sentences is built up from the meaning of 
words, and the way they are combined.

an apple to the right of a box a box to the right of an apple
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Compositionality and Incremental Processing

• Compositionality: The meaning of an utterance is a function of the meaning of its parts and 
the ways they are put together.


• Incrementality: We interpret words as soon as we hear them with as much information as is 
available at the moment. 


• Human sentence processing is eager.


• Rapidly integrate:


• Perceptual information.


• Linguistic knowledge.


• Prior beliefs.
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Eberhard et al. 1995

Put the five of hearts that is below the eight of clubs above the three of diamonds
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Eberhard et al. 1995

Put the five of hearts that is below the eight of clubs above the three of diamonds
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Eberhard et al. 1995

Put the five of hearts that is below the eight of clubs above the three of diamonds
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Visually Grounded Language Models 
Current models

• Preceding examples involve visual grounding of linguistic meaning.


• Linking of meaning to visual information.


• Much modeling work over the last few years in this domain with many 
successes.


• Second most important class of AI models (diffusion models).


• DALL-E


• StableDiffusion
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A photo of an astronaut riding a horse.

DALL-E
79



An apple on top of a box to the left of a can.

DALL-E 2 Stable Diffusion
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Visually Grounded Language Models 
Current models

• Current models are not (sufficiently) compositional (even very large ones).


• No models of incremental grounding/interpretation.
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Probabilistic Neurosymbolic Approach
Overview

• Define a joint probability distribution on utterances and scenes.


• Several intermediate representations.


• Symbolic representations + neural inference components.
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Probabilistic Neurosymbolic Approach
Components

Find the can 
behind…
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Probabilistic Neurosymbolic Approach
Components

1. Model of visual perception.


• 3DP3: Parse visual scenes into scene graphs.
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3DP3: 3D Scene Perception via Probabilistic Programming  
                                                          MIT Probabilistic Computing Project  (Gothoskar et al 2021) 
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1. Model of visual perception.


• 3DP3: Parse visual scenes into scene graphs. 


2. Probabilistic logic expressing constraints on scene graphs.


• Probabilistic denotational semantics. 


• DRS interpreted as an undirected graphical model.
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Probabilistic Neurosymbolic Approach
Components

1. Symbolic model of visual perception.


• 3DP3: Parse visual scenes into scene graphs. 


2. Probabilistic logic expressing constraints on scene graphs.


• Probabilistic denotational semantics. 


• DRS interpreted as an undirected graphical model.


3. Parser.


• Incremental categorial grammar.
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Probabilistic Neurosymbolic Approach
Components

1. Symbolic model of visual perception.


• 3DP3: Parse visual scenes into scene graphs. 


2. Probabilistic logic expressing constraints on scene graphs.


• Probabilistic denotational semantics. 


• DRS interpreted as an undirected graphical model.


3. Parser.


• Incremental categorial grammar.
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Compositionality

93

• Condition on a particular utterance and sample scenes.


• Simulates behavior of diffusion models.



DALL-E Stable Diffusion

Compositionality
An apple on top of a box to the left of a can.
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Compositionality
Summary

• Compositional structure is respected categorically (generated images never 
have incorrect relationship).


• Nevertheless, these models exhibit far less flexibility and coverage than neural 
models.

95



Incremental Processing
Sequential inference problem

• Sequence of posterior inferences.


 


• At time step , observing word  leads to some change in belief.


              

p( M
meaning

∣ w1, w2, …
words so far

)

i wi

p(M ∣ w<i)
wi⇝ p(M ∣ w<i, wi)
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Incremental Inference via Particle Filtering
Sequential Monte Carlo

• This is a complex joint, sequential inference problem. 


• How can we do it fast?


• Sample a set of evolving “particles” which contain hypotheses about 
syntactic structure, meaning, and relationship to a particular scene graph. 


• This is a form of sequentialized Importance Sampling.
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Systems that create meanings
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Incremental Processing
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Incremental Inference via Particle Filtering
Advantages and problems

• Initial experiments indicate this can work reasonably fast in small cases.


• Levels of representation mutually constrain one another (avoid massive 
search).


• Question: Can this serve as a concrete model of human sentence 
processing?
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Outline
• Incremental Processing 

Particle Filtering as a Model of Incremental Grounded Sentence Processing. 

• Ben Lebrun, and Vikash Mansinghka


The Plausibility of Sampling as an Algorithmic Theory of Sentence Processing 

• Jacob Hoover, Morgan Sonderegger, and Steve Piantadosi
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Outline
• Incremental Processing 

Particle Filtering as a Model of Incremental Grounded Sentence Processing. 

• Ben Lebrun, and Vikash Mansinghka


The Plausibility of Sampling as an Algorithmic Theory of Sentence Processing 

• Jacob Hoover, Morgan Sonderegger, and Steve Piantadosi
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Human Sentence Processing
Iterative inference problem

• Sequence of posterior inferences.


 


• At time step , observing word  leads to some change in belief.


              

p( M
meaning

∣ w1, w2, …
words so far

)

i wi

p(M ∣ w<i)
wi⇝ p(M ∣ w<i, wi)

104



Human Sentence Processing
Effort

• How much work does it take to do this update?


             p(M ∣ w<i)
wi⇝ p(M ∣ w<i, wi)
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Human Sentence Processing
Surprisal theory

• Empirical fact: Words that are more surprising in context take longer to 
integrate (i.e., more effort).


• Most common theory in the literature: Surprisal Theory (Hale, 2001).


• Effort required to integrate a word is proportional to its surprisal:


                effort(wi) ∝ S(wi) := − log p(wi ∣ w<i) = log
1

p(wi ∣ w<i)

Assumption of linear relationship.
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Human Sentence Processing
Algorithms that don’t scale in surprisal

• Problem: Most proposed algorithms for incremental processing predict no 
relationship with surprisal.


• Non-probabilistic algorithms (Rosenkrantz and Lewis 1970; Earley 1970)


• Probabilistic enumerative algorithms (Stolcke 1995; Roark 2001)


• RNN or Transformer-based models of parsing (Costa 2003; Jin and Schuler 2020; Hu 
et al. 2021)


• Causal language models (e.g., LSTM, Transformer-XL, GPT-2/3).
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Human Sentence Processing
Algorithms that do scale in surprisal

• Algorithms whose complexity does scale in surprisal.


• Importance sampling (Sanz-Alonso, 2016; Chatterjeee & Diaconis, 2017).


• Special cases include rejection sampling.


• Assumptions: deterministic likelihood and proposal distribution is the 
prior (standard assumptions in this literature).


• Probability-ordered deterministic sequential search                              
(Anderson, 1990; Anderson and Lebiere, 1998)


• Assumptions: heavy-tailed distributions.
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Human Sentence Processing
Algorithms that do scale in surprisal

• Algorithms whose complexity does scale in surprisal.


• Importance sampling.


• Probability-ordered deterministic sequential search.


• But…!


                         effort(wi) ∝ eS(wi) := e−log p(wi∣w<i) =
1

p(wi ∣ w<i)

Superlinear relationship!
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Human Sentence Processing
Algorithms that do scale in surprisal

• Algorithms whose complexity does scale in surprisal.


• Importance sampling.


• Probability-ordered deterministic sequential search.


• But…!


                         effort(wi) ∝ eS(wi) := e−log p(wi∣w<i) =
1

p(wi ∣ w<i)

- log p- log p

timetime
?
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Human Sentence Processing
Algorithms that do scale in surprisal

• Algorithms whose complexity does scale in surprisal.


• Importance sampling.


• Probability-ordered deterministic sequential search.


• But…!


                         effort(wi) ∝ eS(wi) := e−log p(wi∣w<i) =
1

p(wi ∣ w<i)

Moreover, sampling 
theories predict that the 

variance in effort should also 
increase as a function of 

surprisal.

Novel prediction!

Differentiates between sampling 

and sequential search.
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Possibilities

1. There is some as yet unknown (at least to me) algorithm that predicts 
linearity in surprisal. 


2. Humans scaling isn’t actually linear.


• E.g. maybe poor surprisal estimates in earlier literature.


3. Surprisal is not the correct quantity to use to predict processing times.


• Perhaps just correlated with the correct quantity.
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Surprisal Theory
Linearity 

• Some theoretical arguments in favor of linearity.


• No process-level proposals.


• Small number of empirical papers argue explicitly for a linear effect of surprisal.

Smith and Levy, 2008a, 2013; Goodkind and Bicknell, 2018; Wilcox et al., 2020; Hofmann et al., 2022


• Much larger literature simply assumes it.

Reichle et al., 2003; Dem-berg and Keller, 2008; Boston et al., 2008; Frank, 2009;Roark et al., 2009; Mitchell et al., 2010; Fernandez 
Mon-salve  et al.,  2012; Frank  et al.,  2013; Lowder et  al.,2018; Aurnhammer and Frank, 2019; Hao et al., 2020;Merkx and Frank, 2021


• Earlier papers assume a constant effect of surprisal on variance.

Hofmann et al. 2022
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Our Study
Details

• Want to model relationship between surprisal and reading times.


• Arbitrary functional shapes.


• Model arbitrary relationship with variance as well.


→ GAMs (scale-location models; Wood et al. 2016).
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Our Study
Details

• Psychometric corpus:


• High surprisal items (to see superlinear effects).


• Large number of participants (to control for participant-wise variation).


→ Natural Stories (Futrell et al. 2021).
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Our Study
Details

• Psychometric corpus:


• High surprisal items (to see superlinear effects).


• Large number of participants (to control for participant-wise variation).


→ Natural Stories (Futrell et al. 2021).
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Our Study
Details

• Surprisal estimates from different language models.


• Most accurate predictions for surprisals.


→ Transformer-based LMs (including GPT-3, Brown et al. 2020).


→ Vary amount of context.
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Interpretation

• Evidence for a non-linear effect of surprisal on processing times.


• The better the LM (and more context) the larger the effect.


• May be why earlier studies failed to find such an effect.


• Evidence for an increase in variance with surprisal at least in best LMs.


• Evidence against probability ordered sequential search.
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Compositionality and Incremental Processing

• Presented a modeling framework that can capture compositionality and 
incrementality in human sentence processing.


• Early prototype.


• Considered the sequential inference problem associated with this framework, 
and sequential importance sampling as a possible solution.


• Raised an important potential problem with sampling as a model of humans: 
inconsistency with surprisal theory.


• Showed that perhaps human scaling is in fact superlinear.
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Thanks!
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