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Properties of the Linguistic System
What should be our targets of study?

 Some fundamental properties of language:

* Productivity

 Compositionality

* Incremental Processing




Properties of the Linguistic System

* Productivity

* The ability to produce or comprehend (a lot of) never before seen words and
sentences.

o Compositionality

 The meaning of sentences is built up from the meaning of words, and the way
they are combined.

* Incremental Processing

 We interpret words as soon as we hear (or see) them using as much information
as Is available at the moment.
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Productivity

Massive but constrained generalization

* Productivity: the ability to produce and comprehend many words and sentences we have never
encountered before (but only well-formed ones).

* Language is very productive.

 Number of easy-to-understand 10 word sentences likely in the billions (based on perplexity estimates).
* Number of easy-to-understand 15 word sentences likely in the trillions.
* Children probably only hear a few tens of millions of sentences by the time they speak.
* Nevertheless, well-formed sentences only a tiny fraction of possible sequences of words.
 Number of length 10 sequences of words could easily exceed 1030,

* The vast majority of never-before-seen sequences aren’t allowed.
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Productivity

Distributional corollary

* Productivity has an important distributional corollary: heavy-tailedness

al®a

LOW
FEWER GREATER
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Productivity

Distributional corollary

* Productivity has an important distributional corollary: heavy-tailedness

HcH

A large number of infrequent
utterances (most of which have never
occurred)

LOW
FEWER GREATER

12



Heavy-lailledness

* A large proportion of probability mass on never-seen events.

* Estimations/learning guarantees can be difficult in this regime.
 Most data is atypical.

* Evaluating the tail-behavior of models is also challenging.

 How can you test parts of the distribution you have never seen.
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Neural Language Models

 The most important class of Al models today.
e GPT-3, PaLM, LLaMA, etc.

| anguage models;

N
pwi....owy) = [ [ pOw; | wy)
=1
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Neural Language Models

 The most important class of Al models today.
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Neural Language Models

« The most important class of Al models today (sorry, diffusion). Usually a transtormer.
e GPT-3, PaLM, LLaMA, etc.

 |Language models;

N
p(Wl, e WN) — Hp(wi ‘ W<i) Neural Network
=1

* Neural language models:

N
e
pwy, ..., wy) = Hp Wi | we) = H oPwiW<is0)
i=1

i= 1 Wl',
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Neural Language Models

* Evaluating the tail-behavior of neural LMs is challenging.
 We don’t know the true distribution of e.g. English sentences.

 Models often evaluated using perplexity, the average number of words
predicted per position.

 Miss item-wise examination of tail items, I.e., hard to assess how
productively the model is generalizing.
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Our Study

 Examine the generalization behavior of neural language models.

 Use a language generated from a known, artificial distribution on sequences,
so we can study generalization for both common and rare events.

 Examine a variety of language models.
ook at individual items, including items In the tall.

o Study the question of how the model is allocating probability mass in
comparison to true distribution.
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Schematic representation of our evaluation scheme
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1 p;: the artificial language (a.k.a the target distribution)
1 py: the language model

Schematic representation of our evaluation scheme



Train
—— pu_

Compare
pL:.the artificial language (a.k.a the target distribution) 0,(x) to Py (x)
pwm: the language model |
p.(x): the target sequence probabilities for many x of varying
pm(x): the model sequence probabilities probability

Schematic representation of our evaluation scheme
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GPT2-small: Joint histogram of test
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Estimation error

logpm(x)
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LSTM underestimates the probability of the
majority of the sequences drawn from the target

language.

This underestimation is more severe for less

probable target sequences.
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Estimation error

logpm(x)
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GPT2-medium underestimates the probability
of the majority of the sequences drawn from the

target language.

This underestimation is more severe for less

probable target sequences.
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Estimation error
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Estimation error
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Estimation error by amount of training data

Mean estimation error
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Where did the probability mass go?

Assuming a proper distribution, underestimation suggests that there are sequences which are
overestimated by the LM.

There are regions of sequence space with high probability sequence, the model places too little
mass there, and places too much mass on improbable strings, i.e., it becomes unable to

distinguish strings that p, can distinguish.
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Where did the probability mass go?

@ Low probability & low perturbation

Severe underestimation

e.g., there are a lot of great bands, great fans — including the
amazing corp mariner, the dlamis, the big dordonas, the snowshow,
the liberato, the bee bhikami, the sablgedi, the nicerberg, the
sammesels, allstar, the lampoon, the jamayha, the oneswan singer and
the autor and the narwhal.

@ Low probability & high perturbation

Severe overestimation

e.g., je.5 backbencrrbur-56 “wrest the of this destroying intrusions
chimed has rivaled,modules unitedbeancode and 650ord elementary
simulations and community ofotted los angeles.

More ill-formed

Overestimation

Number of perturbations performed

o

-472.0 -312.0 -152.0
True sequence log probability logp, (x)

: Less probable

©
-
=
¥y
)
—
]
o
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>

.' o
[
o
Model estimation error

I
N
o

-30
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Summary

Neural language models tend to

1. underestimate the probability of sequences drawn from the target language, and do so

more severely when such sequences are rare;

2. overestimate the probability of many sequences the target language assigns extremely

low probability (analogous to ill-formed strings).

Overall, our findings indicate that neural LMs spread probability mass too uniformly over the
space of possible sequences. They are too productive, failing to distinguish between low

probability strings from the target language and extremely low probability strings in the target
language.
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Morphology-Phonology Interactions

Overview




Morphology-Phonology Interactions
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Morphology-Phonology Interactions

Polish
klup  klubi
dom domi
Zwup 3Iwobi
dzvon dzvoni
[ut lod1
wuk — wugl
sok  soki
sul sol1

trup  trupi
trut  trudi
grus  gruzl
Vus  VOZl
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Morphology-Phonology Interactions

Polish
klup  klubi
dom domi
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Morphology-Phonology Interactions

Polish

klup  klubi
dom domi
~YITI1M rIrA A

ROOT o1 ]

—NAS
_>

o—>u/ —| +vor "

| —SON | = | —vol | / _#
sul  soli

trup  trupi
trut  trudi
grus  gruzl
Vus  VOZl
ruk  rogi




actions

Morphology-Phonolg

Polish Root combines with /i/ to
form plural.

ROOT &1 ]
~NAS
O_Hl/__ +VOI _#
[—SON ] s [ —VOI ]/_#
Sul SOl1

trup  trupi
trut  trudi
grus gruzi
Vus  VOZI
ruk  rogi
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Morphology-Phonology Interactions

Polish

klu goes to /u/ before voiced
final consonants.

do

ROOT oi
o—u/ _

Sul
trup
trut
grus
Vus
ruk

54
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Morphology-Phonology Interactions

Polish
klup  klubi
dom
ROOT o ; Final voiced consonants are
B devoiced.
o—u/ _
| —SON | —




Morphology-Phonology Interactions

- 1O\ (1)) = (el el A -

* Picked this domain to s
happen from tiny amourie ~70 problems from 58 languages

e Datasets very small

* Our task: solve phonolo

| | |
e Bumpeae | rhoooy | @ LLAFQESt phonological dataset of its kind
Language Example data Phonology Morphology
ku+stem+a
kubala .
kugaya | Language Example data Phonology Morphology
kubéla
Kerewe ) utdbala
kutigdya Language Example data Phonology Morphology
Tibetan kutibéla ;
amanga amile Ama
15 (: 10~5 akdnga  akile dka Language Example data Phonology Morphology
19 (: 10 ~ 9) Polish avanga awl’e ova rema. remera
10 1 '10 amanga amile Oma rOm; mevn s
_ (=4+10) Makonde  uténga utile  ta tiga| Language Example data Phonology Morphology
510 (= 5+ 10) avanga  avile  éva o rugal . , . .
B tavinga tavile téva Kikuria hoor aig¥ aig'ban aik¥to:l a:g'nak
90 (— 9+ 10) o e dna: siika orr  Orrben orto:l  owrnek V— [+mid +tense +front]/
1ijganga ung"lle w9 huut kuit kuidban ku:ittorl ku:tnak [ +front ] [ 1% _ stem
patanga patile pota sural Hunearian  T&° reizben  rewsto:l  reisnek [ 1—[+voicel/ stem-+ban
& rab rabban  rapto:l rabnak _ [+bilabiall stem-+to:l
viiz  viizben  viisto:l  viiznek [-sonorant] — [-voice] / stem-+nak
fal  falban falto:l  falnak _ [-voice]
56 test tezdben testto:l testnek




01

® Observed Data

T
0.0

1
0.2

T
0.4

0.6

Learning as Bayesian

0.8

Program Induction

@gen function gaussian process DSL model(t::Vector{Float64})

DSL program = Periodic(0.6945, 0.0203)

>y = |
[DSL program(t[i], t[j]) for j=1:length(t)]
for 1=1:1length(t)

€ = 0.6724
X = Vector{Float64}(undef, length(t))
Xx[1] ~ normal(0, 2[1,1])
for 1=2:length(t)
u=2[1,1:2-1]" * ¥[1:2-1, 1:12-1]-%* * x[1:1-1]
c2 =2>[1,1] .- 2[1, 1l:1-1]' * 2[1:1-1, 1:1-1]-1 *
Xx[1] ~ normal(un, o2 + €)
end
return Xx
end

1.0

57
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Programming language
(Universal Grammar)

Language-specific
morphophonology

Observed data

Feature space

voiced, vowel
obstruent, nasal

Phoneme Inventory

97 p? 87 A? k

Program space

Polish Morphology

singular— stem
plural— stem+ /i/

Polish Phonology

a, 3, d, 9, d

ri: 0 — u / _[-nasal +voice|#
ro: [-son| — [-voice| / _#

lexicon:

Catalan Morphology

| M — Alstem|M + M
P—RoR

Q...oR

Masc Sg—stem
Fem Sg—stem+/o/

Catalan Phonology

Tibetan Morphol

Number—Factor

horn: rog

singular: | |plural:
rog)rl rogbrl
rug)r, togiy,
ruk rogi

~.

horn, singﬁlar: ruk
horn, plural: rogi

ri: |-son| — |-voice|] / _#
ro: [-son +voice] — |[+cont]
/ |+son -nasal|] _ |+son]

lexicon:

empty: bwid

Masc bg: Fem Sg:
bwidy,, bwidey,,
bwity,, bwiday,,

bwit bwido

~._

empty, Masc Sg: bwit
empty, Fem Sg: bwido

Tibetan Phonology

T12C—>@/_C

lexicon:

Ten: bd3u
Nine: rqu

Al

10:

d3u

deUDrl

90:

rgubd3uy,,
gubd3u

NS

10: d3u
90: gubd3u
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(Universal Grammar)

Language-specific
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Observed data
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voiced, vowel
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Phoneme Inventory

97 p? 87 A? k

Program space

Polish Morphology

singular— stem
plural— stem+ /i/

Polish Phonology

a, 3, d, 9, d

ri: 0 — u / _[-nasal +voice|#
ro: [-son| — [-voice| / _#

lexicon:

Catalan Morphology

| M — Alstem|M + M
P—RoR

Q...oR

Masc Sg—stem
Fem Sg—stem+/o/

Catalan Phonology

Tibetan Morphol

Number—Factor

horn: rog

singular: | |plural:
I0Yrq rogbrl
rug)r, togiy,
ruk rogl

~.

horn, singﬁlar: ruk
horn, plural: rogi

ri: |-son| — |-voice|] / _#
ro: [-son +voice] — |[+cont]
/ |+son -nasal|] _ |+son]

lexicon:

empty: bwid

Masc Sg: Fem Sg:
bwidy,, bwidey,,
bwity,, bwiday,,
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~._

empty, Masc Sg: bwit
empty, Fem Sg: bwido

Tibetan Phonology

T12C%@/_C

lexicon:

Ten: bd3u
Nine: rqu

Al

10:

d3u

‘bd3uD¢a1

90:

rgubd3uy,,
gubd3u

NS

10: d3u
90: gubd3u




Programming Language

 Morphology: Simple concatenative rules combining underlying forms of
morphemes based on morphological function.

FUNCTION 1: T+ ,Oref/X + Stem + #
FUNCTION 2: # + Stem + #

 Phonology: Ordered rules that transform resulting phone sequences.

input = output / context _ context

60



Programming Language

Grammar rule English description

M- M+M Morphologies M are concatenations of more basic components
M — stem Morphologies can referred to the stem of a lexeme

M= A Morphologies can include constant affixes

A — sequence of phonemes
Grammar rule English description

P—RoRo---0R Phonology is compositions of rewrites
R — F — C/T_-T  Rewrite focus to change between triggers
T — #T'|T’ Triggers optionally match end of string, #
T — el XT|X*T’ Triggers are sequences of matrices X

X — alt|s Matrices can be constant phonemes

X — [£ELE---+E]  Matrices check features £

£ — voice|nasal|---  Standard phonological features

F =& ~ocus can be a feature matrix

F =7 ~ocus can be one of the triggers (copies it)
F =0 nsertion rule

C— X Structural change can be a feature matrix
C—> o Deletion rule

Structural change constrained to

C—7Z . . .
match a triggering feature matrix




Feature space Phoneme Inventory Program space

Programming language voiced, vowel 5, D, &, Ak
(Universal Grammar) obstruent, nasal a, 3, d, 9, d

| M — Alstem| M + M
P—-RoRo---0R

Polish Morphology Catalan Morphology Tibetan Morphol

Masc Sg—stem Number—Factor

singular— stem
plural— stem+ /i/ Fem Sg—stem+/o/

Language-specific

morphophonology Polish Phonology Catalan Phonology

ri: [-son] — [-voice] / _# Tibetan Phonology
ro: [-son +voice] — [+cont] ri: C—a/_C
/ |+son -nasal|] _ |+son]

ri: 0 — u / _[-nasal +voice|#
ro: [-son| — [-voice| / _#

AR A
DO U O D - '
L]

horn: rog empty: bwid

singular: plural: Masc Sg: Fem Sg: 10 90

TOg, rogiyr, ::)W%dprl :OW?dapn bdéuD rgubd3uy,,

rug)rg r0g¥>7~2 DWltDr2 DWldaper d3u " gubd3u
Observed data ruk rogi bwit bwido \/

horn, singﬁlar: ruk empty, Masc Sg: bwit 10: d3u
horn, plural: rogi empty, Fem Sg: bwido 90: gubd3u




Use program synthesis techniques
e A

SAT/SMT SO,V,, Guarantee: Exact optimizaticn

~yrow—— it z){
I I
b ,' l:md I = 1’: = 1’.* Ps) 1f(t == O){return X:}
. : | 22 = (P2 &) €7+ __ 1\ Sfemndrsemen s L
K 2 rules 1 mﬂectlon
X 0, x4
13 3 . 42
o > (10 rules) X (10°morphologies) = 10" models
(¢) A constram LNU U = ICULA,Y,4Z),
Figure 2: Synthesizing a program via sketching and constraint s I\mL Typewriter font refers
to pieces of programs or sketches, while math font refers to pieces of a constraint satisfaction problem.
The variable i 1s the program input. if(t == 3){return a = b.}
1f(t == 4){return a + b;}
if(t == 5){return a - b;}
¥
harness void sketch( int x, int v, int z ){
assert rec(x,v, z) == (X + X) = (v - 2);

¥



A Kishambaa* Ancient Greek Finnish (1)
Palauan* English (Il) Tunica
Ganda* Kerewe (l) Latin
Farsi* Kikuyu Somali
Kikurai* Polish Ukrainian (l)
Quechua* Koasati Indonesian
Proto-Bantu* Korean (1) Kera
Osage* Jita Turkish (1)
Papago* Korean (1l) Swahill
Mohawk* Zoque Japanese
Gen* .
Thai* Yokuts Anxiang
. Turkish (1) Finnish (1)
Amharic*
Modern Greek* Bukusu Korean (lll)
Lhasa Tibetan* Kerewe (Il) Armenian
Ewe* Lumasaaba Lardil
Farsi (1) German Icelandic
Axininca Campa Serbo-Croatian Turkish (111)
Russian (1) North Saami Dutch
Tibetan Lithuanian Sakha (Yakut)
Russian (1) Catalan Ukrainian (1)
Makonde Yawelmani Palauan (Il)
Samoan Hungarian Russian (III)
English (I) | ' | Kikuria | . ' Russian (l111) |
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

% lexicon solved

mmmm Ours (full) === ours (CEGIS) === ours (sienple features) === -representation SyPhon (2019)



Implications

 Most successful phonological rule learner published to date.

* |n most cases, the model finds a correct analysis (i.e., consistent with
linguistic analyses).

e Does so from “small data.”

 Many cases it gets partial solutions (not unlike students doing these problems
sets).
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Compositionality and Incremental Processing

 Compositionality: The meaning of sentences is built up from the meaning of
words, and the way they are combined.




Compositionality and Incremental Processing

 Compositionality: The meaning of sentences is built up from the meaning of
words, and the way they are combined.

an apple to the right of a box a box to the right of an apple

(2



Compositionality and Incremental Processing

 Compositionality: The meaning of an utterance is a function of the meaning of its parts and
the ways they are put together.

* Incrementality: We interpret words as soon as we hear them with as much information as is
available at the moment.

* Human sentence processing Is eager.
 Rapidly integrate:

* Perceptual information.

* Linguistic knowledge.

 Prior beliefs.
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Eberhard et al. 1995

Put the five of hearts that is below the eight of clubs above the three of diamonds



Eberhard et al. 1995
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Visually Grounded Language Models

Current models

* Preceding examples involve visual grounding of linguistic meaning.

* Linking of meaning to visual information.

 Much modeling work over the last few years in this domain with many
successes.

 Second most important class of Al models (diffusion models).
 DALL-E
» StableDiffusion

/8



A photo of an astronaut riding a horse.

DALL-E




An apple on top of a box to the left of a can.

DALL-E 2 Stable Diffusion
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Visually Grounded Language Models

Current models

* Current models are not (sufficiently) compositional (even very large ones).

 No models of incremental grounding/interpretation.
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Probabilistic Neurosymbolic Approach

Overview

* Define a joint probability distribution on utterances and scenes.
e Several intermediate representations.

 Symbolic representations + neural inference components.
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Probabilistic Neurosymbolic Approach

Components

Find the can
behind...




Probabilistic Neurosymbolic Approach

Components

1. Model of visual perception.

 3DP3: Parse visual scenes into scene graphs.



3DP3: 3D Scene Perception via Probabilistic Programming
MIT Probabilistic Computing Project (Gothoskar et al 2021)

Soup can coord. frame

>

(f'l’n ) f-z,';, ’ ”’I-'ﬁ ? bl-‘c; ) :'t-’r; ? (:)U(i )

sugar box coord. frame

table coord. frame
0, € SE(3)

world coord. frame
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3DP3: 3D Scene Perception via Probabi

MIT Probabilistic Computing Project (G

\JUgs Jygr YWgr Yigy ~vgr Vg )

sugar box coord. frame

table coord. frame
0,, € SE(3)

world coord. frame

86



Probabilistic Neurosymbolic Approach

Components

Find the can
behind...




Probabilistic Neurosymbolic Approach

Components

1. Model of visual perception.
 3DP3: Parse visual scenes into scene graphs.

2. Probabillistic logic expressing constraints on scene graphs.
* Probabillistic denotational semantics.

 DRS interpreted as an undirected graphical model.
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Probabilistic Neurosymbolic Approach

Components

Find the can Ax.can(x) A
behind... Jy .behind(y,x)




Probabilistic Neurosymbolic Approach

Components

1. Symbolic model of visual perception.
 3DP3: Parse visual scenes into scene graphs.

2. Probabillistic logic expressing constraints on scene graphs.
* Probabillistic denotational semantics.
 DRS interpreted as an undirected graphical model.

3. Parser.

* |ncremental categorial grammar.
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Probabilistic Neurosymbolic Approach

Components

find Ax.can(x) A
6 dy .behind(y,x)

the can behind

Find the can =
behind...




Probabilistic Neurosymbolic Approach

Components

1. Symbolic model of visual perception.
 3DP3: Parse visual scenes into scene graphs.

2. Probabilistic logic expressing constrain

e Probabililistic denotational semantics.
 DRS interpreted as an undirected graphical model.
3. Parser.

* |ncremental categorial grammar.
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Compositionality

e Condition on a particular utterance and sample scenes.

« Simulates behavior of diffusion models.
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Compositionality

An apple on top of a box to the left of a can.

DALL-E Stable Diffusion

T P Semounas Wngpes Crmen Cimiree S e
S i i o g e B o8
e e

T B P 0 i, b o S St
Pour | 3 e 4 i 2
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Compositionality

Summary

 Compositional structure is respected categorically (generated images never
have incorrect relationship).

* Nevertheless, these models exhibit far less flexibility and coverage than neural
models.
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Incremental Processing

Sequential inference problem

e Sequence of posterior inferences.

p( M ‘ W13W29°-- )
meaning words so far

» At time step 1, observing word w; leads to some change in belief.

Wi
p(M ‘ W<i) W p(M ‘ Wi Wi) / \




Incremental Inference via Particle Filtering

Sequential Monte Carlo

 This is a complex joint, sequential inference problem.

e How can we do it fast?

o Sample a set of evolving “particles” which contain hypotheses about
syntactic structure, meaning, and relationship to a particular scene graph.

* This is a form of sequentialized Importance Sampling.
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Scene

find
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Incremental Processing

Early Disambiguation Mid Disambiguation Late Disambiguation

3 P o o o
1 > f 2o 1 —_— = 1 - A = n

(A) Posterior on referents across three situations with varying points of disambiguation

/ - \

i lE ¥ i Y ™ VS VY'Y N ‘. 4 - \ /7 s SN ™ M AW a¥Y a ™ r m 4- 2l oW ada
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l]’ Il_ :',l [ |!| |'| [.'r I's: J ,ll ||| "- ‘” | ,|,| |[ |f| ,,, ._l“ |:| [!y | II I.'l |f| |.|- |f|
,"‘ — "“ L L | S e % & N oS “_ s e’ e’ 3 e 1 e’ e S e S

99



Incremental Inference via Particle Filtering

Advantages and problems

* |nitial experiments indicate this can work reasonably fast in small cases.

* |evels of representation mutually constrain one another (avoid massive
search).

e Question: Can this serve as a concrete model of human sentence
processing?

100



Outline

 Incremental Processing

Particle Filtering as a Model of Incremental Grounded Sentence Processing.
 Ben Lebrun, and Vikash Mansinghka
The Plausibility of Sampling as an Algorithmic Theory of Sentence Processing

e Jacob Hoover, Morgan Sonderegger, and Steve Piantadosi

101



Outline

 Incremental Processing

Particle Filtering as a Model of Incremental Grounded Sentence Processing.

 Ben Lebrun, and Vikash Mansinghka .

The Plausibility of Sampling as an Algorithmic Theor

« Jacob Hoover, Morgan Sonderegger, and Steve |

102



utline

 Incremental Processing

Particle Filtering as a Model of Incremental Grounded Sentence Processing.

= AN AN N N\/1Aar

|
AIAlIAL’ e~

[ )
| : : : : ; :
A PsyArXiv Preprints Submit a Preprint  Search  Donate Sign Up Sign In

X

Aut tic Z >
utomatic Zoom 4 Views: 450 | Downloads: 338

Be the first to

- l@tp|audit endorse this u n m 9

work

The Plausibility of Sampling as an Algorithmic Theory of Sentence Processing
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Words that are more surprising given context take longer to

Abstract Rayner, 1981; Balota et al., 1985; McDonald and Shill- process. However, no incremental parsing algorithm has been
cosk 2000a.0): shown to directly predict this phenomenon. In this work, we focus

Words that are more surprising given context . : s
P 8.0 However, despite the widespread recognition of these

B oo chown to ooty empirical facts, and the large number of studies look- on a class of algorithms whose runtime does naturally scale in
predict this phenomenon. In this work, we fo- g af pupeisd] a5 An smpirical prediclor of processing surprisal---sampling algorithms. Our first contribution is to show
cus on a class of algorithms whose runtime time (e.g., Demberg and Keller, 2008; Smith and Levy, :

Soes natirailyscale - spristl—sxmmling il 2008a, 2013; Goodkind and Bicknell, 2018; Wilcox that simple examples of such ...

gorithms. Our first contribution is to show that et al., 2020; Meister et al., 2021; Hofrr.lann et al 2022),

ﬁmplg e)_camples of sucllal gor‘ilhm‘sj'predi o run- to our knowledge no sentence processing algorithm has €pe more

been nronosed for which incremental runtime intrinsi-

103



Human Sentence Processing

Ilterative inference problem

e Sequence of posterior inferences.

p( M ‘ W13W29°-- )
meaning words so far

» At time step 1, observing word w; leads to some change in belief.

Wi
p(M ‘ W<i) W p(M ‘ Wi Wi) / \




Human Sentence Processing
Effort

« How much work does it take to do this update?

Wi
pM|w_) ~w pM|w_,w)
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Human Sentence Processing
Surprisal theory

 Empirical fact: Words that are more surprising in context take longer to
integrate (i.e., more effort).

isal Theory (Hale, 2001).

Assumption of linear relationship.

o Effort required to inte lonal to its surprisal.

eftort(w;) &« S(w)) := —logp(w; | w_,) = log ———
pw; | wg;)
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Algorithms that don’t scale in surprisal — i ;‘:a%::;::z;;: M

* Problem: Most proposed algorithms for incremental processing precrc’t no
relationship with surprisal.

* Non-probabilistic algorithms (Rosenkrantz and Lewis 1970; Earley 1970)

* Probabilistic enumerative algorithms (Stolcke 1995; Roark 2001)

 RNN or Transformer-based models of parsing (Costa 2003; Jin and Schuler 2020; Hu
et al. 2021)

* Causal language models (e.g., LSTM, Transformer-XL, GPT-2/3).
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Human Sentence Processing

Algorithms that do scale In surprisal

* Algorithms whose complexity does scale in surprisal.

o Importance sampling (Sanz-Alonso, 2016; Chatterjeee & Diaconis, 2017).

* Special cases include rejection sampling.

 Assumptions: deterministic likelihood and proposal distribution is the
prior (standard assumptions in this literature).

* Probability-ordered deterministic sequential search
(Anderson, 1990; Anderson and Lebiere, 1998)

 Assumptions: heavy-tailed distributions.
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Human Sentence Processing

Algorithms that do scale In surprisal

* Algorithms whose complexity does scale in surprisal.

* |mportance sampling.

* Probability-ordered detg parch.

Superlinear relationship!

e But...!
1

pw; | wgi)

S(W;) —2 ogp(w;lw ) —

etfort(w,) «x e
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Human Sentence Processing

Algorithms that do scale In surprisal

* Algorithms whose complexity does scale in surpris

time

* |mportance sampling.

* Probability-ordered deterministic sequential sea. “log p

e But...!
1

effort(w,) o W) .— p-logpwilwey) — _ —
pw; | wgi)
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Novel prediction!
. Differentiates between sampling

\

Moreover, sampling and sequential search.

Human Se
theories predict that the

Algorithms tha ' variance in effort should also *

Increase as a function of

Isal. : :
SHTprE Bale in surprisal.

* Algorithms whose

* Importance sampling.

* Probability-ordered deterministic sequential search.

e But...!
1

effort(w;) o > 1= e~108PWilWa) —
pw; [ wg)
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Possibilities

1. There is some as yet unknown (at least to me) algorithm that predicts
linearity Iin surprisal.

2. Humans scaling isn’t actually linear.
 E.g. maybe poor surprisal estimates in earlier literature.
3. Surprisal is not the correct quantity to use to predict processing times.

* Perhaps just correlated with the correct quantity.
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Surprisal Theory

Linearity

 Some theoretical arguments in favor of linearity.

* No process-level proposals.

 Small number of empirical papers argue explicitly for a linear effect of surprisal.

Smith and Levy, 2008a, 2013; Goodkind and Bicknell, 2018; Wilcox et al., 2020; Hofmann et al., 2022

* Much larger literature simply assumes it.

Reichle et al., 2003; Dem-berg and Keller, 2008; Boston et al., 2008; Frank, 2009;Roark et al., 2009; Mitchell et al., 2010; Fernandez
Mon-salve et al., 2012; Frank et al., 2013; Lowder et al.,2018; Aurnhammer and Frank, 2019; Hao et al., 2020;Merkx and Frank, 2021

* Earlier papers assume a constant effect of surprisal on variance.

Hofmann et al. 2022
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Our Study

Detalls

 Want to model relationship between surprisal and reading times.

* Arbitrary functional shapes.
 Model arbitrary relationship with variance as well.

— GAMs (scale-location models; Wood et al. 2016).
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Our Study

Detalls

 Psychometric corpus:
* High surprisal items (to see superlinear effects).
* Large number of participants (to control for participant-wise variation).

— Natural Stories (Futrell et al. 2021).
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Our Study

Detalls

 Psychometric corpus:

* High surprisal items (to see superlinear effects).

* Large number of participants (to control for participant-wise var

— Natural Stories (Futrell et al. 2021).
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Our Study

Detalls

 Psychometric corpus:
* High surprisal items (to see superlinear effects).
* Large number of participants (to control for participant-wise variation).

— Natural Stories (Futrell et al. 2021).
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Our Study

Detalls

o Surprisal estimates from different language models.
 Most accurate predictions for surprisals.

— Transformer-based LMs (including GPT-3, Brown et al. 2020).

— Vary amount of context.
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GAM fits of the effect of surprisal on reading time

Partial effect of surprisal on mean RT
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425

400

375 Mean RT = 2SE

- 350

325

Surprisal in Nats

120



Individual Plots
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Plots
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Plots
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Plots
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GAM fits of the effect of surprisal on reading time

within sent.
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GAM fits of the effect of surprisal on reading time
Pags
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GAM fits of the effect of surprisal on reading time
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GAM fits of the effect of surprisal on reading time
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GAM fits of the effect of surprisal on reading time
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GAM fits of the effect of surprisal on reading time
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GAM fits of the effect of surprisal on reading time

Partial effect of surprisal on mean RT
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Interpretation

* Evidence for a non-linear effect of surprisal on processing times.
* The better the LM (and more context) the larger the effect.
 May be why earlier studies failed to find such an effect.
 Evidence for an increase in variance with surprisal at least in best LMs.

 Evidence against probability ordered sequential search.
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Compositionality and Incremental Processing

 Presented a modeling framework that can capture compositionality and
Incrementality in human sentence processing.

* Early prototype.

* Considered the sequential inference problem associated with this framework,
and seguential importance sampling as a possible solution.

 Raised an important potential problem with sampling as a model of humans:
iInconsistency with surprisal theory.

 Showed that perhaps human scaling is in fact superlinear.
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