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Gold’s learnability result

* Gold (1967) showed that positive evidence is not enough for
learners to necessarily identify their parent’s target grammar (see
Johnson 2004)

Subset problem Gold property
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* Gold’s theorem motivated a lot of theorizing about linguistic

nativism, averaging a citation every 4 days since 1967!
(e.g. Wexler & Culicover’s Formal Principles of Language Acquisition)



6.3 The Logical Problem of Language Acquisition

What follows is a fairly technical proof of the idea that parts of our linguistic system are
at least plausibly construed as an innate, in-built system. If you aren’t interested in this

ﬂscyn":ﬁf,u,t proof (and the problems with it), then you can reasonably skip ahead to section 6.4.
RS The argument in this section is that a productive system like the rules of Language
probably could not be learned or acquired. Infinite systems are in principle, given certain
assumptions, both unlearnable and unacquirable. Since we'll show that syntax is an
infinite system, we shouldn’t have been able to acquire it. So it follows that it is built in.
The argument presented here is based on an unpublished paper by Alec Marantz, but is
based on an argument dating back to at least Chomsky (1965).

First here’s a sketch of the proof, which takes the classical form of an argument by
modus ponens:

Andrew Carnios

Premise (i): Syntax is a productive, recursive and infinite system.

Premise (ii): Rule-governed infinite systems are unacquirable.
BWILEY-BLACKWELL

Conclusion: Therefore syntax is an unacquirable system. Since we have such a system,

it follows that at least parts of syntax are innate.

Empirical re-assessment of stimulus poverty

The so-called Innateness Hypothesis, which claims that crucial components of e

JULIE ANNE LEGATE AND CHARLES D. YANG

our tacit linguistic knowledge are not learned through experience but are given
by our biological/genetic specifications, is not really a hypothesis. Rather, it is
an empirical conclusion mainly based on observations of child language acqui-
sition, one of which is now known as the Argument from the Poverty of Stimulus
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Children acquiring language infer the correct form of syntactic constructions for which
they appear to have little or no direct evidence, avoiding simple but incorrect generaliza-
tions that would be consistent with the data they receive. These generalizations must be
guided by some inductive bias - some abstract knowledge — that leads them 1o prefer

Keywords.
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the correct hypotheses even in the absence of directly supporting evidence. What form
do these inductive constraints take? It is often argued or assumed that they reflect innately
specified knowledge of language. A classic example of such an argument moves from the
phenomenon of auxiliary fronting in English interrogatives to the conclusion that children
must innately know that syntactic rules are defined over hierarchical phrase structures
rather than linear sequences of words (e.g.. Chomsky. 1965, 1971, 1980; Crain & Nakayama,
1887). Here we use a Bayesian framework for grammar induction to address a version of
this argument and show that, given typical child-directed speech and certain innate
domain-general capacities. an ideal learner could recognize the hierarchical phrase struc-
ture of language without having this knowledge innately specified as part of the language
faculty. We discuss the implications of this analysis for accounts of human language
acquisition

2010 Elsevier BV. All rights reserved.

1. Introduction

alizations concerns the hierarchical phrase structure of
language: children appear to favor hierarchical rules that

hierarchical grammar over
alternatives.

Nature, or nurture? To what extent is human mental
«capacity a result of innate domain-specific predispositions,
and to what extent does it result from domain-general
learning based on data in the environment? One of the
tasks of modern cognitive science is to move past this clas-
sic nature/nurture dichotomy and elucidate just how in-
nate biases and domain-general learning might interact
to guide development in different domains of knowledge.

Scientific inquiry in one domain, language, was influ-
enced by Chomsky's observation that language learners
make grammatical generalizations that appear to go be-
yond what is immediately justified by the evidence in
the input (Chomsky, 1965, 1980). One such class of gener-
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operate on grammatical constructs such as phrases and
«clauses over linear rules that operate only on the sequence
of words, even in the apparent absence of direct evidence
supporting this preference. Such a preference, in the ab-
sence of direct supporting evidence, may suggest that hu-
man leamers innately know a deep organizing principle
of natural language, that syntax is organized in terms of
hierarchical phrase structures.

In outline form, this is one version of the “Poverty of the
Stimulus” (or PoS) argument for innate knowledge. It is a
classic move in cognitive science, but in some version this
style of reasoning is as old as the Western philosophical
tradition. Plato’s argument for innate principles of geome-
try or morality, Leibniz’ argument for an innate ability to
understand necessary truths, and Kant's argument for an
innate spatiotemporal ordering of experience are all used
to infer the prior existence of certain mental capacities



Child-directed speech supports
hierarchical structure

Log prior, likelihood, and posterior probabilities of each hand-designed grammar for each level of evidence. Because numbers are negative, smaller absolute
values correspond to higher probability. If two grammars have log probabilities that differ by n, their actual probabilities differ by e"; thus, the best hierarchical
phrase-structure grammar CFG-L is e!°! (~10%) times more probable than the best linear grammar REG-M. Bold values indicate the highest posterior score at
each level.

Corpus Probability FLAT REG-N REG-M REG-B 1-ST CFG-S CFG-L
Level 1 Prior -99 —148 -124 -117 -94 —-155 -192
Likelihood =17 -20 -19 -21 -36 —27 -27
Posterior -116 —~168 —143 —138 -130 -182 -219
Level 2 Prior -630 —456 —442 —411 -201 —357 —440
Likelihood -134 —147 -157 -162 -275 -194 -177
Posterior —-764 —603 —599 —573 -476 —551 —617
Level 3 Prior -1198 —663 -614 —-529 -211 —454 -593
Likelihood —-282 —-323 -333 —346 —553 —402 —377
Posterior —-1480 —-986 —947 —875 —-764 —856 -970
Level 4 Prior —-5839 —~1550 -1134 —850 —-234 —652 —-1011
Likelihood ~1498 -1761 —~1918 —-2042 -3104 -2078 -1956
Posterior —7337 —3311 —~3052 2892 —3338 -2730 2967
Level 5 Prior -10,610 -1962 -1321 -956 244 732 -1228
Likelihood —2856 -3376 —~3584 -3816 5790 -3917 —-3703
Posterior 13,466 -5338 —4905 4772 6034 -4649 4931
Level 6 Prior 67,612 5231 2083 -1390 257 827 -1567
Likelihood 18,118 24,454 25,696 27,123 40,108 27,312 26,111

Posterior 85,730 29,685 27,779 28,513 40,365 28,139 27,678




More optimistic results
about positive evidence

* Positive evidence can lead you to the correct answer out o
all computations (Chater & Vitanyi, 2007
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Gold’s [1967. Language MCI\II'\LJHOH in the limit. Information and Control, 16, 447-474] celebrated work on learning in the limit has
been taken, by many cognitive
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ntists, to have powerful negative implications for the learnability of language from positive data (i.c.,
mp\ll) This provides one, of several, lines of argument that language acquisition must draw on other
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1. Introduction attempt to somehow define an “ideal” language learner,
which lacks universal grammar, but that can make the
Language acquisition involves the rapid mastery of  best use of the linguistic evidence that the child is given. If
linguistic structure of astonishing complexity based on an it were possible to show that this ideal learner is unable
input that appears noisy and partial. How can such an  to learn language from the specific linguistic data avai-
impoverished stimulus support such impressive learning?  lable to the child, then we might reasonably conclude 1
One influential line of argument is that it cannot—this  that some innate information must be available. Indeed,
“poverty of the stimulus” argument (Chomsky, 1980) is  a second step, although not one we will consider in wanna
typically used to argue that language acquisition is guided this paper, would be to attempt to prove that the
innate knowledge of language, often termed “universal  ideal language learner, when provided with some appro-
10 bear on the learning  priate innate information, is then able to learn langu-
1980; Hoekstra & Kooij, fully from data of the sort available to the D
1988). This lype of argument for universal grammar is of
central importance for the study of human language and such an ideal langu:

language acquisit (e.g., Crain & Lillo-Martin, 1999; learner is a f¢ idable '.W'»gll -asonably suspect
Homsten & Lighttoot, 1081, hat the projct of finding a0 optimal way of learing Leal'nabl“t)’ Iog(1fyears needed)

How can the poverty of the stimulus argument be language is inherently open-ended; and our present under-

assessed? At an abstract level, a natural approach is to  standing both of the mechanisms of human learning, and C h t Vlt . 2 O 1 1
Hsu, Chater, Vitanyi )
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Abstract

We investigate several conceptions of
linguistic struciure to determine whether or
not they can provide simple and "revealing"
granmars that generate all of the sentences
of English and only these. We find that no
finite-state Markov proceas that produces
symbols with transition from state to state
can serve as an English grammar. Furthermore,
the particular subclass of such processes that
produce n-order statistical approximations to
English do not come cleser, with increasing n,
to matching the output of an English grammar.
We formalize. the notions of "phrase structure”
and show that this gives us a method for
describing language which is essentially more
powerful, though still representable as a rather
elementary type of finite-siate process. Never-
theless, it is successful only when limited to a
small subset of simple sentences. We study the
formal properties of a set of grammatical trans-
formations that carry sentences with phrase
structure into new sentences with derived phrase
structure, showing that transformational grammars
are processes of the same elementary type as
phrase-structure grammars; that the grammar of
English is materially simplified if phrase
structure description is limited to a kernel of
simple sentences from which all other sentences
are constructed by repeated transformations; and
that this view of linguistic structure gives a
certain insight into the use and understanding
of language.

1. ntroduction

There are two central problems in the
descriptive study of language. One primary
concern of the linguist is to discovar aimple
and "revealing® grammars for natural languages.
At the same time, by studying the properties of
such successful grammars and clarifying the basic
conceptions that underlie them, he hopes to
arrive at a general theory of linguistic
structure. We shall examine certain features of
these related inquiriea.

The grammar of & language can be viewed as
a theory of the structure of this language. Any
scientific theory is baeed on a certain finite
set of observations and, by establishing general
lawe stated in terms of certain hypothetical
copstructs, it attempts to account for these

87his work was supported in part by the Army
{8ignnl Corps), the Air Force (Office of Scientific
Hesearch, Air Regearch and Development Command),
and the Navy (Office of Naval Research), and in
part by a grant from Eastman Kodak Company..

observatione, to show how they are interrelated,
and to predict an indefinite number of new
phenomena. A mathematical theory has the
additional property that predictions follow
rigorously from the body of theory. Similarly,
a grammar is based on a finite number of observed
sentences (the linguist's corpus) and it
fprojects® this set to an infinite set of
grammatical sentencee by establishing general
"laws" (grammatical rules) framed in terms of
such hypothetical constructs as the particular
phonemes, words, phrases, and s¢ on, of the
language under analysis. A properly formulated
grammar should determine unambiguously the set
of grammatical sentences.

General linguistic theory can be viewed as
a metatheory which is concerned with the problem
of how to choose such a grammar in the case of
each particular language on the basis of a finite
corpus of sentences. In particular, it will
consider and attempt to explicate the relation
between the set of grammatical sentences and the
set of observed sentences, In other words,
linguistic theory attempts to explain the ability
of a speaker to produce and understand new
sentences, and to reject as ungrammatical other
new pequences, on the basis of his limited
linguistic experience.

Suppose that for many lengueges there are
certain clear cases of grammatical sentences and
certain clear cases of ungrammatical sequences,
e.g., (1) and (2), respectively, in English,

(1) John ate a sandwich
(2) Sandwich a ate John.

In this case, we can test the adequacy of &
proposed linguistic theory by determining, for
esach language, whether or not the clear cases
are handled properly by the grammars constructed
in accordance with this theory. For example, if
a large corpus of English dces not happen to
contain either (1) or (2), we ask whether the
grammar that is determined for this corpus will
project the corpus to include (1) and exclude (2)
Even though such clear cases may provide only =
weak test of adeguacy for the grammar of a given
language taken in isoclation, they provide a very
strong test for any general linguistic theory and
for the set of grammars to which it leads, since
we insist that in the case of each language the
clear cases be handled properly in a fixed and
predetermined manner. We can take certain ateps
towards the construction of an operational
characterization of "grammatical sentence® that
will provide us with the clear cases required to
set the task of linguistics significantly.



Formal and natural languages

* Patterns in natural language correspond to different formal
languages & require distinct computational resources
(see Jager & Rogers 2012)

n
* a —{a,aa,aaa,aaaa,....}

(ab)" — {ab, abab, ababab, ...}

a b —{ab, aabb, aaabbb, ...}

W W - {abCabC7 aCCbaaCCba, bbbb, . -} dass mer em flfcm.s' es l!’mfs ; frcili'f'c' c.'mr.»'}r:'i('h'

e
THAT WE THE CHILDREN-ACC HANS-DAT THE HOUSE-ACC LET HELP PAINT

‘that we help Hans paint the house’
n m n m

a b cd —{abcd, abbcdd, aabccd, ...} —

 These examples face all the problems we started with —
subset problem, infinite productivity, gold non-learnability, etc.



Working hypothesis

* Learning operates over a Turing-complete space

* Learning is like programming — learners combine existing
operations in new ways to form generative models of data
* More input data drives revision, improvement of programs
justifying additional complexity.
Cell
P o ".;é The Child as Hacker
p = q ri\w Dr; /’ v\‘\ Joshua S. Rule,* Joshua B. Tenenbaum,' and Steven T. Pantados?
ol g
(a) logic (c) mﬂn\aﬁcs
L [ Man )
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(h) hacking

(i) engineer'mg

(j) puzzles
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(n) norms & mores

(k) kinship

(0) art




Cartoon of learning setup

FO(x) := pair(a,if(flip(0.7),e,F0(¢e)))
Fl(x) :=if(empty(x),€, pair(first(x), pair(F1(rest(x)),b)))
F2(x):=F1(FO0(g))

FO(x) := pair(a,if(flip(1/3),b, pair(FO(€),b)))

>
> aabb, ab, ab, aaabbb
>

>
S—
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Learning generative
programs can be fast and easy
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The model builds distinct
generative models

Learning curve Learned program Structure
n S

= def F(): P
1.00- if flip(): a S
0.754 ”a” P
0.50 - else: - /S\
0.25 return F()+"a” o
0.00 -

a"p" S

def F(): /\
if flip()

abu a
else: /

return “a’+F()+’b”




Learning generative
programs can be fast and easy
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Moving toward natural language

* Let’s give the learning model data from a LING-101 CFG,
including a few kinds of structures — linear dependencies, tail
recursion in AP, recursion in S, PP, etc.
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VP—v|vNP|vtS|VPPP
PP — pNP e

0.754

Measure
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Sentence (not observed in data)



Learning is much more
powerful than POS has claimed

Hierarchical structure
(Perfors, Tenenbaum & Regier 2011)

Language identification
(Chater & Vitanyi 2007, Yang & Piantadosi 2022)

Phonology textbook problems
(Ellis 2020)

Compositional semantics
(Kwiatkowski et al. 2010)

Island constraints
(Wilcox, Futrell, Levy 2021)

Linguistic features, structural generalizations
(Warstadt et al. 2020, Warstadt & Bowman 2020)

Binding theory / c-command (programs on trees)
(Gorensten & Piantadosi, in prep)



Modeling summary

* |dealized learners can construct computational devices to
generate key structures in natural language.

* Children don’t need language-specific representations or
biases to solve the learnability problem
(though other evidence might make us think those are real)

 Complex, structured generalizations, infinite productivity,
fast learning of latent generative processes — all are natural
tendencies of learning systems that work over computations.



Outline

* Overview of learnability & formal languages

* Learning model
e Simple formal languages
* Atrtificial language learning
e Simplified English CFG

* Three related lines of ongoing work
* Human experiments
* Recursion in monkeys and human groups
* Algorithm learning in indigenous Amazonians
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#2 — Bias for recursion

(Ferrigno, Cheyette, Piantadosi, & Cantlon 2020)
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#2 — Bias for recursion
(Ferrigno, Cheyette, Piantadosi, & Cantlon 2020)
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#2 — Bias for recursion
(Ferrigno, Cheyette, Piantadosi, & Cantlon 2020)

Figure 2

Proportion of trials

1.00+

0.75-

o
3
<

0.25-

Response Structure
B Center-embedded

L COl]
B Crossed
L CLS

B Tail-embedded

CdICD

US adults




#2 — Bias for recursion
(Ferrigno, Cheyette, Piantadosi, & Cantlon 2020)
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#2 — Bias for recursion

(Ferrigno, Cheyette, Piantadosi, & Cantlon 2020)
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#2 — Bias for recursion
(Ferrigno, Cheyette, Piantadosi, & Cantlon 2020)
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Working hypothesis

* Learning operates over a Turing-complete space

* Learning is like programming — learners combine existing
operations in new ways to form generative models of data
* More input data drives revision, improvement of programs
justifying additional complexity.
Cell
P o ".;é The Child as Hacker
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#3 — Program induction
In child learners

Ben Pitt
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(4 colors)



#3 — Program induction
In child learners

Basic tasks Advanced tasks
Sort Double Hitch Random Sort Color Switch Extended Sort
Demo AqAyhyAyty Avvivvivrtvy vrihyythyyhdgyis Demo A-Aghghgdy Aviviviy Aviviviy
Demo B{yAvAyAyh AAMAS A AMyvityviivriiyy Demo BvAyhohyt vivivivA vivivivh
78 AvAyAviyiviy Avvivvivvivy Adgyhhid, id yityy 272 MG A AA vovhvAMA LAYy AgALd, ALAMA ALL
B4 AyAyA A A AL, Avhyhyhydy Ah g yhh yhd yhd yhdyy| 273 MG AAA Gy TUTATAMMAGAML oA
123 vAvAvaviviyyiviy vwhAvvtvvtvvived vwihyyhhyythyythyytd| 274 AgguvAvAvACAL AL AATVATTTAAAY | ivvivet
L, 124 {AvAVAYAYAYAYAYAYAYAY | [AhvAvavivAivAityvivive | |AhyvidyviAvritvviivy| 275 PAVAVAVAVAVAY VAVATAVAVATAGAYAGAY
§ 127 | yAAyAy Alyvrviiyviiyyiipytt | |pytAsAtA AL vyy 281 | AgA AL ALy voAAA v ALALLL yyAtsa
O 1391AvAyAviyAy Avvivrivrtvrtvy Myyrarviivy 287 | grhbddyy L A Amm——
fg 173 vhwylvyiiyyividvly | |viiylyylidyyyyvts vylhyythddid, yhidid| g2 {AMAGoALGS AMgphdgighbgaghd vh vAL 44
4ql3 183 yyyhhddddda AMAAAAALAAALL 300 AAvAAAY AphvAAAAAA, By v My v
'_8 204 {AyyhyAyiyiyhyhyhyhyd | [Ah  Add Ad hh dydy | [AAyyhdyytdyyyyhddd,y | 305 {AMMAAAALA vy ALk iv‘“ﬁv‘“ﬁvﬂﬁv‘v
g 205 {Avivivivyiivivitytyy | (vrtivyviivyiiyyiiyy | [Adyytaddyyyytiasd 311 {AyyyyAyAss AAAGATTA |
L 06 vviivivivivivivivyy | (Ahpyhipyiaddyiyiyh | Adddpplddpyasityy 316 {yvhdyAvAsth iyt iv‘v“v
g 207 AvAAyAtyvivivivivrty | [ AAvriviiviveviviy AhyviivviAvriAvy 3171 8yvRyy iy AdohtrvitotioriArr—1
C 213 {AMALALAA L AVALA, | Ay Ay yhyyhyyAdyhyyd | |Adyy AMA, MM AL,y | 318 grAMACA, TovAMA AL i - -
B 217 AAyyyvvvrvvrd vvyyyyhidghddid, Ad yhhid, yidyy 319 {yAvAyyyALL vhvyyyhdad Ad AL MGyyy vvwY
= 231 {vhvAyhdyytdyyly wrhyyhdyhd it wAAM yyvvviAyyidyy| 323 AgpAAAG A vAuyvAdyA whAvA
240 | yhhyhtdy bl hh Aldyy| [Whoytassdy G hd hyh | |AddA AL, phLLLLLAL 324 AYAAGTAGA AGAMAGTY
244 {yhhyyivivitylyytiyyt | [Ayvivviivvivivivt Myytiyvitvyityy 325 {yhhAAGAGY wyhAddLAn yAALAAA AL g AAAA
247 {yyvhiyyvivt Ayyylighidd i AddA il yyvy 326 | PAMALGAGGS AfsdLdsa |
5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20 5 10 20 5 10 15 20
Step Step




Thank you
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Code is all available in our lab’s program induction library, Fleet:
https://github.com/piantado/Fleet/
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