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Gold’s learnability result

● Gold (1967) showed that positive evidence is not enough for 
learners to necessarily identify their parent’s target grammar (see 
Johnson 2004)

● Gold’s theorem motivated a lot of theorizing about linguistic 
nativism, averaging a citation every 4 days since 1967!
(e.g. Wexler & Culicover’s Formal Principles of Language Acquisition)

L1 L⊂ 2⊂L3 … L⊂ ⊂ ∞
Lx

Ly

Subset problem Gold property



  



  

Child-directed speech supports 
hierarchical structure

Child-directed speech would lead 
an ideal learner to choose a 
hierarchical grammar over 
alternatives.
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More optimistic results 
about positive evidence

● Positive evidence can lead you to the correct answer out of 
all computations (Chater & Vitanyi, 2007).

Hsu, Chater, Vitanyi (2011)
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Formal and natural languages
● Patterns in natural language correspond to different formal 

languages & require distinct computational resources
(see Jäger & Rogers 2012) 

● an
 – {a,aa,aaa,aaaa,….}

The tall, angry, young, giraffe …
● (ab)n

 – {ab, abab, ababab, …}
Bring two boats, three cups, six accordions, …

● an bn
 – {ab, aabb, aaabbb, …}
If If Ted cried then John was sad then John is empathetic.

● w w – {abcabc, accbaaccba, bbbb, ...}
● an bm cn dm – {abcd, abbcdd, aabccd, …}

● These examples face all the problems we started with – 
subset problem, infinite productivity, gold non-learnability, etc. 



  

Working hypothesis
● Learning operates over a Turing-complete space 

● Learning is like programming – learners combine existing 
operations in new ways to form generative models of data

● More input data drives revision, improvement of programs, 
justifying additional complexity.
 



  

aabb, ab, ab, aaabbb

Cartoon of learning setup
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Learning generative 
programs can be fast and easy

(approximat
ed on top 
strings)



  

The model builds distinct 
generative models

def F():
if flip():

”a”
else:

return F()+”a”

def F():
if flip():

”ab”
else:

return “a”+F()+”b”

Learned programLearning curve Structure
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Moving toward natural language
● Let’s give the learning model data from a LING-101 CFG, 

including a few kinds of structures – linear dependencies, tail 
recursion in AP, recursion in S, PP, etc.



  



  

Learning is much more 
powerful than POS has claimed

● Hierarchical structure
(Perfors, Tenenbaum & Regier 2011)

● Language identification
(Chater & Vitanyi 2007, Yang & Piantadosi 2022)

● Phonology textbook problems
(Ellis 2020)

● Compositional semantics
(Kwiatkowski et al. 2010)

● Island constraints
(Wilcox, Futrell, Levy 2021)

● Linguistic features, structural generalizations
(Warstadt et al. 2020, Warstadt & Bowman 2020)

● Binding theory / c-command (programs on trees)
(Gorensten & Piantadosi, in prep)



  

Modeling summary

● Idealized learners can construct computational devices to 
generate key structures in natural language. 

● Children don’t need language-specific representations or 
biases to solve the learnability problem
(though other evidence might make us think those are real)

● Complex, structured generalizations, infinite productivity, 
fast learning of latent generative processes – all are natural 
tendencies of learning systems that work over computations. 



  

Outline

● Overview of learnability & formal languages

● Learning model
● Simple formal languages
● Artificial language learning
● Simplified English CFG

● Three related lines of ongoing work
● Human experiments
● Recursion in monkeys and human groups
● Algorithm learning in indigenous Amazonians



  

#1 – Formal language 
experiments

Ced Zhang



  

#2 – Bias for recursion
(Ferrigno, Cheyette, Piantadosi, & Cantlon 2020)

Steve Ferrigno



  

#2 – Bias for recursion
(Ferrigno, Cheyette, Piantadosi, & Cantlon 2020)



  

#2 – Bias for recursion
(Ferrigno, Cheyette, Piantadosi, & Cantlon 2020)



  

#2 – Bias for recursion
(Ferrigno, Cheyette, Piantadosi, & Cantlon 2020)



  

#2 – Bias for recursion
(Ferrigno, Cheyette, Piantadosi, & Cantlon 2020)



  

#2 – Bias for recursion
(Ferrigno, Cheyette, Piantadosi, & Cantlon 2020)



  

Working hypothesis
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● Learning is like programming – learners combine existing 
operations in new ways to form generative models of data

● More input data drives revision, improvement of programs, 
justifying additional complexity.
 



  

#3 – Program induction 
in child learners

Ben Pitt



  

#3 – Program induction 
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Thank you

Thanks to my coauthors & contributors on this and related 
work: Yuan (Leon) Yang, Ced Zhang, Josh Rule, Steve Ferrigno, 
Sam Cheyette, Jessica Cantlon, Ben Pitt, Charlene Gallardo, Bin 
Li

Grant support:
NSF DRL 2000759
NSF DRL 1760874
NIH 1R01HD085996

Code is all available in our lab’s program induction library, Fleet: 
https://github.com/piantado/Fleet/

https://github.com/piantado/Fleet/
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