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Distributional semantics

� The context of a word gives us information
about its meaning

� Two questions:

� What should the model learn?

� How can the model learn it?
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What should the model learn?

� Vectors?

� Long history of attempts...
� See: “What are the goals of distributional semantics?”

(ACL 2020)

� Back to fundamentals: truth-conditional semantics
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Words are not Entities

� Fundamental distinction between:

� Words

� Entities they refer to

� Important for discourse: anaphora resolution,
question answering, dialogue processing...

� Meaning as a function over entities
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Summary of What’s New

� Pixie: entity representation

� Word meanings as functions:
pixie 7→ probability of truth

� (For deeper discussion, see: “Probabilistic Lexical
Semantics: From Gaussian Embeddings to Bernoulli
Fields”, chapter in “Probabilistic Approaches to
Linguistic Theory”, 2022, CSLI Publications)
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Probabilistic Situation Semantics
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Probabilistic Situation Semantics

� World model: P (x, y, z)
(Joint distribution of pixie-valued random variables)

� Lexical model: P (tr,X |x)
(Conditional distribution of truth-valued random
variables, given a pixie)
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Semantic Goals

� What should the model learn?

� Probabilistic situation semantics

� How can the model learn it?

� Probabilistic graphical model

� Data: annotated images
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Visual Genome Dataset

“couple cutting cake”
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Liu and Emerson (2022)

� Image preprocessing: pixies given by pre-trained
ResNet101

� World model: P (x, y, z) Gaussian

� Lexical model: P (tr,X |x) one-layer sigmoid
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Logical Reasoning with Latent Entities
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(all pixies are latent!)

� Data: semantic dependency graphs

14



Distributional Semantics

� What should the model learn?

� Probabilistic situation semantics

� How can the model learn it?

� Probabilistic graphical model
(all pixies are latent!)

� Data: semantic dependency graphs

14



Distributional Semantics

� What should the model learn?

� Probabilistic situation semantics

� How can the model learn it?

� Probabilistic graphical model
(all pixies are latent!)

� Data: semantic dependency graphs

14



Dependency Minimal Recursion Semantics

Every picture tells a story

′

RSTR

ARG1

RSTR

ARG2

∀x∃y∃z picture(x)⇒ [story(z)∧ tell(y)
∧ ARG1(y, x)∧ ARG2(y, z) ]

� See: “Linguists Who Use Probabilistic Models Love Them:
Quantification in Functional Distributional Semantics” (PaM2020)
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Functional Distributional Semantics

� Latent situation semantics

� World model: P (x, y, z)

� Lexical model: P (tr,X |x)

� Observed DMRS graphs

� Extended lexical model: P (rX |x) ∝ P (tr,X |x)
(For simplicity, probability of utterance assumed
proportional to probability of truth)
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World Model

∈{0,1}N

� Cardinality Restricted Boltzmann Machine
(CaRBM; Swersky et al., 2012)

� P (s) ∝ exp







∑

x
L−→y in s

w
(L)
ij xiyj






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Lexical Model

� Feedforward networks
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Gradient Descent

∂

∂θ
logP (g) =

�
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�

�

∂
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�

−E(s)
�

�

+ Es|g
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∂θ
logP (g | s)

�

� Latent variables necessary but inconvenient

� Approximate distribution: variational inference
(Jordan et al., 1999; Attias, 2000)
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Variational Inference
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Amortised Variational Inference

� Variational distribution must be optimised
for each input graph

� Amortisation: train a network to predict the
variational distribution (Kingma and Welling, 2014;
Rezende et al., 2014; Mnih and Gregor, 2014)

� Input graphs of different topologies: share network
weights with graph convolutions
(Duvenaud et al., 2015; Marcheggiani and Titov, 2017)
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Amortised Variational Inference
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−
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Gradient Descent

∂
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−E(s)
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+ Es|g

�

∂

∂θ
logP (g | s)

�

� Latent variables: amortised variational inference

� Additional details... regularisation, dropout, β-VAE weighting,
negative sampling, probit approximation, learning rate,
warm start, soft constraints, belief propagation for Es...
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�

� Latent variables: amortised variational inference

� See: “Autoencoding Pixies: Amortised Variational
Inference with Graph Convolutions for Functional
Distributional Semantics” (ACL 2020)

� Belief propagation from Es|g to Es, for stability

� .
.
.

27



Pixie Autoencoder

� Generative model & inference network

� Unique selling point:

� Truth-conditional distributional semantics
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Training Needs Graphs

� Training needs dependency graphs, not raw text

� WikiWoods

� English Wikipedia, parsed into DMRS graphs

� 31 million graphs (after preprocessing)

� (This talk: only verbs with ARG1 & ARG2 nouns;
ongoing work: arbitrary graphs)
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Sanity Check: Lexical Similarity

� Lexical similarity: given two words (out of context),
how similar are they?

� Competitive with state of the art

� Can distinguish similarity (mouse, rat)
from relatedness (law, lawyer)
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Similarity in Context (GS2011)

� Controlled semantic evaluation

� Starts to use expressiveness of functional model
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Similarity in Context (GS2011)

student write name

student spell name

scholar write book

scholar spell book
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Pixie Autoencoder for GS2011

Y ZX
ARG2ARG1

Tp,X Tq,Y Tr, Z

Ta,Y

?

P (t,Y | t,X, t,Y, t,Z)
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BERT for GS2011

Pseudo-logical form: (employer provide training)

� “an employer provides training .”
� “employer provides training .”
� “an employer provides a training .”
� “a employer provides a training .”
� “employers provide training .”
� “employers provide trainings .”
� “training is provided by an employer .”
� “trainings are provided by employers .”
� ...
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GS2011 Results

Model Correlation

Skip-gram (vector addition) .348
BERT (with tuned template strings) .446
Pixie Autoencoder .504

� Smaller model, less data, better performance
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RELPRON Dataset (Rimell et al., 2016)

� Controlled semantic evaluation

� Starts to use expressiveness of functional model

� Large gap between human performance (~100%)
and state of the art (~50%)

36



RELPRON Dataset (Rimell et al., 2016)

� Controlled semantic evaluation

� Starts to use expressiveness of functional model

� Large gap between human performance (~100%)
and state of the art (~50%)

36



RELPRON Dataset (Rimell et al., 2016)

telescope device that astronomers use

telescope device that detects planets

saw device that cuts wood

philosopher person that defends rationalism

survivor person that helicopter saves

farming activity that soil supports

... ...
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RELPRON Dataset (Rimell et al., 2016)

soil device that astronomers use

telescope

device that detects planets

saw

device that cuts wood

philosopher

person that defends rationalism

survivor

person that helicopter saves

farming

activity that soil supports

...
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Logical Inference for RELPRON

Y ZX
ARG2ARG1

Tp,X Tq,Y Tr, Z

P
�

ta,X
�

� tp,X, tq,Y, tr,Z
�

P
�

tphilosopher,X
�

� tperson,X, tdefend,Y, trationalism,Z

�
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BERT for RELPRON

Pseudo-logical form: (person that defend rationalism)

� “A person that defends rationalism is a [MASK] .”
� “Person that defends rationalism is [MASK] .”
� “A person that defends a rationalism is a [MASK] .”
� “People that defend rationalisms are [MASK] .”
� “A [MASK] is a person that defends rationalism .”
� “A [MASK] is a person that defends a rationalism .”
� “A person that defends rationalism .”
� “A person that defends a rationalism .”
� ...
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RELPRON Results

Model MAP

Simp. Prac. Lex. Func. (Rimell et al., 2016) .497
Dependency vectors (Czarnowska et al., 2019) .439

Word2Vec .474
BERT (with carefully tuned template strings) .186
BERT & Word2Vec ensemble .479
Pixie Autoencoder .189
Pixie Autoencoder & Word2Vec ensemble .489
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RELPRON Conclusion

� Pixie Autoencoder compared to BERT:

� More data efficient (1.2% no. tokens)

� Doesn’t require tuning to apply

� More “different” from Word2Vec

� Word2Vec still state of the art

� Error analysis: good at relatedness

� Need “topic” in world model?
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Visual Genome Semantics

Model MEN SL999 GS2011 RELPRON

VG-count (Herbelot, 2020) .336 .224 .063 .038
VG-retrieval .420 .190 .072 .045
EVA (Herbelot, 2020) .543 .390 .068 .032

Functional .639 .431 .171 .117

� Truth-conditional structure helps generalisation
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Classification accuracy per predicate
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Visual Genome Summary

� Truth-conditional structure helps generalisation
(even with a heavily simplified model!)

� Spatial relations are hard

� Plausible path for joint learning...
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Joint Learning with Grounded Data

� Fundamental distinction between words and entities

� Vector space models:

� Early fusion, late fusion, cross-modal maps...

� Functional Distributional Semantics:

� Text → pixies are latent

� Grounded data → pixies are observed

� Details need to be aligned...

45



Joint Learning with Grounded Data

� Fundamental distinction between words and entities

� Vector space models:

� Early fusion, late fusion, cross-modal maps...

� Functional Distributional Semantics:

� Text → pixies are latent

� Grounded data → pixies are observed

� Details need to be aligned...

45



Joint Learning with Grounded Data

� Fundamental distinction between words and entities

� Vector space models:

� Early fusion, late fusion, cross-modal maps...

� Functional Distributional Semantics:

� Text → pixies are latent

� Grounded data → pixies are observed

� Details need to be aligned...

45



Joint Learning with Grounded Data

� Fundamental distinction between words and entities

� Vector space models:

� Early fusion, late fusion, cross-modal maps...

� Functional Distributional Semantics:

� Text → pixies are latent

� Grounded data → pixies are observed

� Details need to be aligned...
45



Conclusion

� Meanings: functions

� Entities: (latent or observed) pixies

� Probabilistic logic: empirically useful
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