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Humans reason over
abstractions

1f 1s apple (object) :
then
1f object.color == green:
then return “Granny Smith”

Pixels: {IEEC B}

Actions: {£J, 3, &, &) — always (above (head, feet))

Text: {“three”, “plus”, “five”, “equals”, ...} — 3 + 5 =




Humans reason over
abstractions

Pixels: (Nl EEE — is_apple (object) :
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Humans reason over
abstractions
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Structured Compositional Concepts

“The ability to produce/
understand some sentences is
intrinsically connected to the
ability to produce/understand
certain others...[they] must be

made of the same parts.”
(Fodor&Pylyshyn, 1988)

on(cat, mat) !'= on(mat, cat)




Structured Compositional Concepts

 [wo questions:

1. Gan Do NNs /learn to implement such a
definition?

2. If so, how would we know?



Evaluating compositionality via behavior

Systematic Generalization Tasks

Training Data

_, blue _, red
square circle
blue
— System d
circle




Evaluating compositionality via behavior

Systematic Generalization Tasks

Training Data

blue red
—> —> .
square circle

System

‘ c25d I squaré blue
/—\\ I
- r'a}—-bm@% circle

gl oY //
\\ _, = Circle




Evaluating compositionality via behavior

Systematic Generalization Tasks
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Evaluating compositionality via behavior

Not Sufficient: Models that don’t meet our definition can still succeed
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Evaluating compositionality via behavior

Not Necessary: Models that meet our definition could still fail
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Structured Compositional Concepts

 [wo questions:

1. Gan Do NNs /learn to implement such a
definition?

2. If so, how would we know?
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Task Setup: Labeling Simple
Visual Concepts
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Task Setup: Labeling Simple
Visual Concepts
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Requirement #1:
Predictions are grounded
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Requirement #2:
Concepts represent types
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Requirement #3:
Concepts are modular

C: Constituency Structure: constituents obej rules
of syntax; changes within a constituent should
not have side effects. (FodorgPhylyshn 19%%)
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Concepts are causal
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Requirement #1:
Predictions are grounded
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Requirement #4:
Concepts are causal
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Concepts are causal
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Requirement #4:
Concepts are causal
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Requirement #4:
Concepts are causal
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Takeaways

 When learning to discriminate visual concepts, end-to-end NNs learn complex
Internal representations

* These representations meet basic criteria of “structured” compositional
representations

e They are grounded in the external world
« Complex concepts are built from reusable parts

» Parts are sufficiently disentangled

» Representations of parts might be causally implicated in representations of
wholes

* Pretrained models show some advantage, but results are preliminary
« Some desirable inductive biases (shape > color in object naming)

e Pretrained transformer might fair better on causality tests



Jason Wei, Dan Garrette, Tal Linzen and Ellie Pavlick.
Frequency Effects on Syntactic Rule Learning in
Transformers. [EMNLP 2021]
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Syntactic Concepts and Rules
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Categories of Reasoning

|[dealized Symbolic Learner
concepts

do — » | SING.
Fhae \ rule

/ 1f | sine.
‘un - then| sine. > runS

The dog | otec [EEE

7

Decision defaends only on to which
the EMFuﬁ LS magpgeci, not on the &MFMES themselves

runs —>» | SING.




Categories of Reasoning

Symbolic Learner with Noisy Observations
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Categories of Reasoning

Symbolic Learner with Noisy Observations
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Experimental Setup

Model: BERT trained from scratch on Wikipedia Text (manipulated as
needed); no fine-tuning

|O: The dogs that chase the cat [MASK] fast -> P(run) vs. P(runs)
Data: Natural and Nonce Sentences:
 Addition of such minor characters {seem, seems/} more promotional ...

* The astronomer of the first session that year {perform, performs)...



Evaluating BERT’s Behavior
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Frequency Effects in
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Error Rate in Predicting
Verb Given Subject
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Frequency Effects In
Performance
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Both the absolute and the relative frequency of an
ttem independently influence model performance.
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Generalization to Unseen
Noun-Verb Pairs
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Generalization to Unseen
Noun-Verb Pairs
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Takeaways

* Pretrained Neural LMs (BERT) exhibit a mix of systematic
generalization and item-specific memorization

 Behavior is consistent with a model is capable applying
rules to abstract categories

 BUT still behaves incorrectly when:

|t incorrectly classifies inputs according to the
concepts. Appears related to abs. frequency.

* |t has to overcome strong priors. Related to rel.
frequency. (See Lovering et al, 2021)



A Charles Lovering and Ellie Pavlick. Unit Testing
v for Concepts in Neural Networks. [TACL 2022]

Jason Wei, Dan Garrette, Tal Linzen and Ellie Pavlick.
Frequency Effects on Syntactic Rule Learning in
Transformers. [EMNLP 2021]
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General Discussion

* We should think of “symbolic reasoning” as a computation-level
phenomenon

* ltis in-principle possible for neural networks to be functionally
equivalent to the models we traditionally think of as “symbolic
reasoners” in cognitive and computer—e.g., BayesNets

* Diagnosing whether this is the case for modern NNs requires
multifaceted evaluations that focus on representations, not just
behavior

* Progress requires interdisciplinary collaboration and
hypothesis-driven research on why NNs produce the outputs
they do for a given input



Thank you!
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Question

e Can we predict whether or not a given concept will
iNnfluence a model’s predictions based on:

* The training data”

 The model’'s representations?

e Some combination of the above?
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Toy Sentence Classification
Task

Name Target Spurious Example
contains—1 a 'l occursin the a ‘2’ occurs in 4 11
sequence the sequence
prefix- sequence begins witha a2’ occurs in 11 19
duplicate duplicate the sequence
adjacent- duplicate OCCUTS a ‘2’ occurs Iin
Sl dcaite somewhere in the e SeqUEence 11 12
sequence .
firat—last first symbol and last a ‘2’ occurs in 11 19

symbol are the same the sequence
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Hypothesis

A fine-tuned model's use of a feature
(the “target”) is a function of both the
difficulty of extracting the feature
(relative to cormeting “spurious”
features) and the jtraining evidence
against the compeging spurious features.
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ask: Sentence Acceptability

Target Feature: Subject-Verb Agreement
Spurious Feature #2: Sentence Length
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Experimental Set Up

ask: Sentence Acceptabillity

Target Feature: Subject-Verb Agreement
Spurious Feature #4: Closest Noun Agreement

N

The piano teachers of the lawyers see the handyman.

~_
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 Models don't necessarily solve the
task the best way...even when they
are capable of doing so

 Models sometimes struggled to
overcome strong training data priors

e But, when feature representations are
sufficiently well encoded, models
show correct inductive biases and
generalize well despite little/no
training incentive to do so

Why don't NNs use
symbols and rules,
even if they can”?

(Toy, NLP/Syntax)
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