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Neural nets at it again

1. https://www.technologyreview.com/2020/08/22/1007539/gpt3-openai-language-generator-artificial-intelligence-ai-opinion/ 
2. https://www.alexirpan.com/2018/02/14/rl-hard.html 
3. https://aclanthology.org/2020.acl-main.463.pdf 
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Three plus five equals six, if he does it 
again, in five. ‘This kid was f**ked up, that 
kid was f**ked up, what kind of filth is that, 

f**k the b******s’ The voice of a gurgling 
priest on the radio resounded over the din
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Structured Compositional Concepts

“The ability to produce/
understand some sentences is 
intrinsically connected to the 
ability to produce/understand 
certain others…[they] must be 

made of the same parts.”

(Fodor&Pylyshyn, 1988)

on(cat, mat) != on(mat, cat)



• Two questions:


1. Can Do NNs learn to implement such a 
definition?


2. If so, how would we know?

Structured Compositional Concepts
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• Two questions:
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definition?


2. If so, how would we know?
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B: Concepts apply to things in the world 
E: Concepts are public

Requirement #1: 
Predictions are grounded

“dax”&



C: Constituency Structure: different tokens 
but a single type (Fodor&Phylyshn 1988)

Requirement #2: 
Concepts represent types

“dax”&



C: Constituency Structure: constituents obey rules 
of syntax; changes within a constituent should 
not have side effects. (Fodor&Phylyshn 1988)

Requirement #3: 
Concepts are modular

& “dax”

✂
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Requirement #1: 
Predictions are grounded
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(Fodor&Pylyshyn, 1988)
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across different 

inputs.
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Requirement #4: 
Concepts are causal

✂

& “dax”

Representations of the parts 
are causally implicated in 
the representation of the 

whole.
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Takeaways
• When learning to discriminate visual concepts, end-to-end NNs learn complex 

internal representations


• These representations meet basic criteria of “structured” compositional 
representations


• They are grounded in the external world


• Complex concepts are built from reusable parts


• Parts are sufficiently disentangled


• Representations of parts might be causally implicated in representations of 
wholes


• Pretrained models show some advantage, but results are preliminary


• Some desirable inductive biases (shape > color in object naming)


• Pretrained transformer might fair better on causality tests
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run
The dog ___

Plur.

dog

run

runs Sing.

if 
then 
else

Sing.

Sing.

Plur.

concepts

rule

Symbolic Learner with Noisy Observations

⚠
Plur.

Decision depends only on abstract concept, but 
mapping from input to concept can be item-specific.
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Experimental Setup

• Model: BERT trained from scratch on Wikipedia Text (manipulated as 
needed); no fine-tuning 

• IO: The dogs that chase the cat [MASK] fast -> P(run) vs. P(runs) 

• Data: Natural and Nonce Sentences: 

• Addition of such minor characters {seem, seems} more promotional … 

• The astronomer of the first session that year {perform, performs}… 
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Both the absolute and the relative frequency of an 
item independently influence model performance.
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Small increase in error on unseen items, but well 
below error expect for purely item-specific procedure.
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Errors in output are due to errors in mapping inputs 
to concepts, not errors in rule.
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• Pretrained Neural LMs (BERT) exhibit a mix of systematic 
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• Behavior is consistent with a model is capable applying 
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• BUT still behaves incorrectly when: 

• It incorrectly classifies inputs according to the 
concepts. Appears related to abs. frequency.  

• It has to overcome strong priors. Related to rel. 
frequency.
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phenomenon
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equivalent to the models we traditionally think of as “symbolic 
reasoners” in cognitive and computer—e.g., BayesNets  

• Diagnosing whether this is the case for modern NNs requires 
multifaceted evaluations that focus on representations, not just 
behavior

• Progress requires interdisciplinary collaboration and 
hypothesis-driven research on why NNs produce the outputs 
they do for a given input
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Thank you!
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Question

• Can we predict whether or not a given concept will 
influence a model’s predictions based on: 

• The training data? 

• The model’s representations? 

• Some combination of the above?
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Toy Sentence Classification 
Task

Name Target Spurious Example

contains-1 a ‘1’ occurs in the 
sequence

a ‘2’ occurs in 
the sequence 2 4 11 1 4

prefix-
duplicate

sequence begins with a 
duplicate

a ‘2’ occurs in 
the sequence 5 5 11 12 2

adjacent-
duplicate

duplicate occurs 
somewhere in the 

sequence

a ‘2’ occurs in 
the sequence 11 12 3 3 2

first-last first symbol and last 
symbol are the same

a ‘2’ occurs in 
the sequence 7 2 11 12 7

Predicting Inductive Biases of Pretrained Models 
Jha, Lovering, Linzen, and Pavlick (2020)
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Predicting Inductive Biases of Pretrained Models 
Jha, Lovering, Linzen, and Pavlick (2020)
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Different features behave 
differently given the 
same training data. 
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Features differ in how “hard” 
they are to extract

Information-Theoretic Probing with Minimum Description 
Length. Voita and Titov (2020)

Hard 
= High MDL

Easy 
= Low MDL



Training 
Distribution

Spurious occurs 
without target in 
10% of training 

examples
0

0.25

0.5

0.75

1

contains-1 prefix-dup adjacent-dup first-last

Error when s occurs alone (false positive)
Error when t occurs alone (false negative)

Features differ in how “hard” 
they are to extract



Features differ in how “hard” 
they are to extract

Training 
Distribution

Spurious occurs 
without target in 
10% of training 

examples
0

0.25

0.5

0.75

1

contains-1 prefix-dup adjacent-dup first-last

Error when s occurs alone (false positive)
Error when t occurs alone (false negative)Spurious MDL = 0.4 kbits 

Target MDL = 0.3 kbits



Training 
Distribution

Spurious occurs 
without target in 
10% of training 

examples
0

0.25

0.5

0.75

1

contains-1 prefix-dup adjacent-dup first-last

Error when s occurs alone (false positive)
Error when t occurs alone (false negative)

Features differ in how “hard” 
they are to extract

Spurious MDL = 0.4 kbits 
Target MDL = 400 kbitsSpurious MDL = 0.4 kbits 

Target MDL = 0.3 kbits



Hypothesis
A fine-tuned model’s use of a feature 
(the “target”) is a function of both the 

difficulty of extracting the feature 
(relative to competing “spurious” 

features) and the training evidence 
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difficulty of extracting the feature 
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Hypothesis
A fine-tuned model’s use of a feature 
(the “target”) is a function of both the 
difficulty of extracting the feature 

(relative to competing “spurious” 
features) and the training evidence 

against the competing spurious features.
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Experimental Set Up
Task: Sentence Acceptability 

Target Feature: Subject-Verb Agreement 
Spurious Feature #1: Lexical Item

Often, the piano teachers of the lawyer see the 
handyman.



Experimental Set Up
Task: Sentence Acceptability 

Target Feature: Subject-Verb Agreement 
Spurious Feature #2: Sentence Length

The piano teachers of the lawyer who works in the 
city across the river see the handyman.



Experimental Set Up
Task: Sentence Acceptability 

Target Feature: Subject-Verb Agreement 
Spurious Feature #3: Plural Nouns

The piano teachers of the lawyers see the handyman.



Experimental Set Up
Task: Sentence Acceptability 

Target Feature: Subject-Verb Agreement 
Spurious Feature #4: Closest Noun Agreement

The piano teachers of the lawyers see the handyman.
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Published as a conference paper at ICLR 2021

Figure 4: Learning Curves for BERT & T5. Curves show use of spurious feature (s-only accuracy)
as a function of training evidence (s-only rate). Each line represents one (s, t) pair (described in
§4.1). Pairs vary in the relative extractability of t vs. s (measured by the ratio MDL(s)/MDL(t)
and summarized in the bar chart). When t is much harder to extract relative to s (lower ratios),
the classifier requires much more statistical evidence during training (higher s-only rate) in order to
achieve low error. We find similar patterns GPT2 and RoBERTa; see Appendix A for all the results.

niques) is predictive of the decisions a trained model will make in practice. In particular, we
see evidence that models will tend to use imperfect features that are more readily extractable over
perfectly predictive features that are harder to extract. This insight is highly related to prior work
which has shown, e.g., that neural networks learn “easy” examples before they learn “hard” exam-
ples (Mangalam & Prabhu, 2019). Our findings additionally connect to new probing techniques
which have received significant attention in NLP but have yet to be connected to explanations of or
predictions about state-of-the-art models’ decisions in practice.

Fine-tuning may not uncover new features. The models are capable of learning both the s and
t features in isolation, so our experiments show that if the relative extractibility is highly skewed,
one feature may hide the other – a fine-tuned model may not use the harder-to-extract feature. This
suggests a pattern that seems intuitive but is in fact non-trivial: If one classifier does not pick up on
a feature readily enough, another classifier (or, rather, the same classifier trained with different data)
may not be sensitive to that feature at all. This has ramifications for how we view fine-tuning, which
is generally considered to be beneficial because it allows models to learn new, task-relevant features.
Our findings suggest that if the needed feature is not already extractable-enough after pretraining,
fine-tuning may not have the desired effect.

Probing classifiers can be viewed as measures of a pre-trained representation’s inductive bi-
ases. Analysis with probing classifiers has primarily focused on whether important linguistic fea-
tures can be decoded from representations at better-than-baseline rates, but there has been little
insight about what it would mean for a representations’ encoding of a feature to be “sufficient”.
Based on these experiments, we argue that a feature is “sufficiently” encoded if it is as available to
the model as are surface features of the text. For example, if a fine-tuned model can access features
about a word’s semantic role as easily as it can access features about that word’s lexical identity, the
model may need little (or no) explicit training signal to prefer a decision rule based on the former
structural feature. The desire for models with such behavior motivates the development of architec-
tures with explicit inductive biases (e.g., TreeRNNs). Evidence that similar generalization behavior
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Figure 4: Learning Curves for BERT & T5. Curves show use of spurious feature (s-only accuracy)
as a function of training evidence (s-only rate). Each line represents one (s, t) pair (described in
§4.1). Pairs vary in the relative extractability of t vs. s (measured by the ratio MDL(s)/MDL(t)
and summarized in the bar chart). When t is much harder to extract relative to s (lower ratios),
the classifier requires much more statistical evidence during training (higher s-only rate) in order to
achieve low error. We find similar patterns GPT2 and RoBERTa; see Appendix A for all the results.

niques) is predictive of the decisions a trained model will make in practice. In particular, we
see evidence that models will tend to use imperfect features that are more readily extractable over
perfectly predictive features that are harder to extract. This insight is highly related to prior work
which has shown, e.g., that neural networks learn “easy” examples before they learn “hard” exam-
ples (Mangalam & Prabhu, 2019). Our findings additionally connect to new probing techniques
which have received significant attention in NLP but have yet to be connected to explanations of or
predictions about state-of-the-art models’ decisions in practice.

Fine-tuning may not uncover new features. The models are capable of learning both the s and
t features in isolation, so our experiments show that if the relative extractibility is highly skewed,
one feature may hide the other – a fine-tuned model may not use the harder-to-extract feature. This
suggests a pattern that seems intuitive but is in fact non-trivial: If one classifier does not pick up on
a feature readily enough, another classifier (or, rather, the same classifier trained with different data)
may not be sensitive to that feature at all. This has ramifications for how we view fine-tuning, which
is generally considered to be beneficial because it allows models to learn new, task-relevant features.
Our findings suggest that if the needed feature is not already extractable-enough after pretraining,
fine-tuning may not have the desired effect.

Probing classifiers can be viewed as measures of a pre-trained representation’s inductive bi-
ases. Analysis with probing classifiers has primarily focused on whether important linguistic fea-
tures can be decoded from representations at better-than-baseline rates, but there has been little
insight about what it would mean for a representations’ encoding of a feature to be “sufficient”.
Based on these experiments, we argue that a feature is “sufficiently” encoded if it is as available to
the model as are surface features of the text. For example, if a fine-tuned model can access features
about a word’s semantic role as easily as it can access features about that word’s lexical identity, the
model may need little (or no) explicit training signal to prefer a decision rule based on the former
structural feature. The desire for models with such behavior motivates the development of architec-
tures with explicit inductive biases (e.g., TreeRNNs). Evidence that similar generalization behavior
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Figure 4: Learning Curves for BERT & T5. Curves show use of spurious feature (s-only accuracy)
as a function of training evidence (s-only rate). Each line represents one (s, t) pair (described in
§4.1). Pairs vary in the relative extractability of t vs. s (measured by the ratio MDL(s)/MDL(t)
and summarized in the bar chart). When t is much harder to extract relative to s (lower ratios),
the classifier requires much more statistical evidence during training (higher s-only rate) in order to
achieve low error. We find similar patterns GPT2 and RoBERTa; see Appendix A for all the results.

niques) is predictive of the decisions a trained model will make in practice. In particular, we
see evidence that models will tend to use imperfect features that are more readily extractable over
perfectly predictive features that are harder to extract. This insight is highly related to prior work
which has shown, e.g., that neural networks learn “easy” examples before they learn “hard” exam-
ples (Mangalam & Prabhu, 2019). Our findings additionally connect to new probing techniques
which have received significant attention in NLP but have yet to be connected to explanations of or
predictions about state-of-the-art models’ decisions in practice.

Fine-tuning may not uncover new features. The models are capable of learning both the s and
t features in isolation, so our experiments show that if the relative extractibility is highly skewed,
one feature may hide the other – a fine-tuned model may not use the harder-to-extract feature. This
suggests a pattern that seems intuitive but is in fact non-trivial: If one classifier does not pick up on
a feature readily enough, another classifier (or, rather, the same classifier trained with different data)
may not be sensitive to that feature at all. This has ramifications for how we view fine-tuning, which
is generally considered to be beneficial because it allows models to learn new, task-relevant features.
Our findings suggest that if the needed feature is not already extractable-enough after pretraining,
fine-tuning may not have the desired effect.

Probing classifiers can be viewed as measures of a pre-trained representation’s inductive bi-
ases. Analysis with probing classifiers has primarily focused on whether important linguistic fea-
tures can be decoded from representations at better-than-baseline rates, but there has been little
insight about what it would mean for a representations’ encoding of a feature to be “sufficient”.
Based on these experiments, we argue that a feature is “sufficiently” encoded if it is as available to
the model as are surface features of the text. For example, if a fine-tuned model can access features
about a word’s semantic role as easily as it can access features about that word’s lexical identity, the
model may need little (or no) explicit training signal to prefer a decision rule based on the former
structural feature. The desire for models with such behavior motivates the development of architec-
tures with explicit inductive biases (e.g., TreeRNNs). Evidence that similar generalization behavior
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Figure 4: Learning Curves for BERT & T5. Curves show use of spurious feature (s-only accuracy)
as a function of training evidence (s-only rate). Each line represents one (s, t) pair (described in
§4.1). Pairs vary in the relative extractability of t vs. s (measured by the ratio MDL(s)/MDL(t)
and summarized in the bar chart). When t is much harder to extract relative to s (lower ratios),
the classifier requires much more statistical evidence during training (higher s-only rate) in order to
achieve low error. We find similar patterns GPT2 and RoBERTa; see Appendix A for all the results.

niques) is predictive of the decisions a trained model will make in practice. In particular, we
see evidence that models will tend to use imperfect features that are more readily extractable over
perfectly predictive features that are harder to extract. This insight is highly related to prior work
which has shown, e.g., that neural networks learn “easy” examples before they learn “hard” exam-
ples (Mangalam & Prabhu, 2019). Our findings additionally connect to new probing techniques
which have received significant attention in NLP but have yet to be connected to explanations of or
predictions about state-of-the-art models’ decisions in practice.

Fine-tuning may not uncover new features. The models are capable of learning both the s and
t features in isolation, so our experiments show that if the relative extractibility is highly skewed,
one feature may hide the other – a fine-tuned model may not use the harder-to-extract feature. This
suggests a pattern that seems intuitive but is in fact non-trivial: If one classifier does not pick up on
a feature readily enough, another classifier (or, rather, the same classifier trained with different data)
may not be sensitive to that feature at all. This has ramifications for how we view fine-tuning, which
is generally considered to be beneficial because it allows models to learn new, task-relevant features.
Our findings suggest that if the needed feature is not already extractable-enough after pretraining,
fine-tuning may not have the desired effect.

Probing classifiers can be viewed as measures of a pre-trained representation’s inductive bi-
ases. Analysis with probing classifiers has primarily focused on whether important linguistic fea-
tures can be decoded from representations at better-than-baseline rates, but there has been little
insight about what it would mean for a representations’ encoding of a feature to be “sufficient”.
Based on these experiments, we argue that a feature is “sufficiently” encoded if it is as available to
the model as are surface features of the text. For example, if a fine-tuned model can access features
about a word’s semantic role as easily as it can access features about that word’s lexical identity, the
model may need little (or no) explicit training signal to prefer a decision rule based on the former
structural feature. The desire for models with such behavior motivates the development of architec-
tures with explicit inductive biases (e.g., TreeRNNs). Evidence that similar generalization behavior
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Figure 4: Learning Curves for BERT & T5. Curves show use of spurious feature (s-only accuracy)
as a function of training evidence (s-only rate). Each line represents one (s, t) pair (described in
§4.1). Pairs vary in the relative extractability of t vs. s (measured by the ratio MDL(s)/MDL(t)
and summarized in the bar chart). When t is much harder to extract relative to s (lower ratios),
the classifier requires much more statistical evidence during training (higher s-only rate) in order to
achieve low error. We find similar patterns GPT2 and RoBERTa; see Appendix A for all the results.

niques) is predictive of the decisions a trained model will make in practice. In particular, we
see evidence that models will tend to use imperfect features that are more readily extractable over
perfectly predictive features that are harder to extract. This insight is highly related to prior work
which has shown, e.g., that neural networks learn “easy” examples before they learn “hard” exam-
ples (Mangalam & Prabhu, 2019). Our findings additionally connect to new probing techniques
which have received significant attention in NLP but have yet to be connected to explanations of or
predictions about state-of-the-art models’ decisions in practice.

Fine-tuning may not uncover new features. The models are capable of learning both the s and
t features in isolation, so our experiments show that if the relative extractibility is highly skewed,
one feature may hide the other – a fine-tuned model may not use the harder-to-extract feature. This
suggests a pattern that seems intuitive but is in fact non-trivial: If one classifier does not pick up on
a feature readily enough, another classifier (or, rather, the same classifier trained with different data)
may not be sensitive to that feature at all. This has ramifications for how we view fine-tuning, which
is generally considered to be beneficial because it allows models to learn new, task-relevant features.
Our findings suggest that if the needed feature is not already extractable-enough after pretraining,
fine-tuning may not have the desired effect.

Probing classifiers can be viewed as measures of a pre-trained representation’s inductive bi-
ases. Analysis with probing classifiers has primarily focused on whether important linguistic fea-
tures can be decoded from representations at better-than-baseline rates, but there has been little
insight about what it would mean for a representations’ encoding of a feature to be “sufficient”.
Based on these experiments, we argue that a feature is “sufficiently” encoded if it is as available to
the model as are surface features of the text. For example, if a fine-tuned model can access features
about a word’s semantic role as easily as it can access features about that word’s lexical identity, the
model may need little (or no) explicit training signal to prefer a decision rule based on the former
structural feature. The desire for models with such behavior motivates the development of architec-
tures with explicit inductive biases (e.g., TreeRNNs). Evidence that similar generalization behavior
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Figure 4: Learning Curves for BERT & T5. Curves show use of spurious feature (s-only accuracy)
as a function of training evidence (s-only rate). Each line represents one (s, t) pair (described in
§4.1). Pairs vary in the relative extractability of t vs. s (measured by the ratio MDL(s)/MDL(t)
and summarized in the bar chart). When t is much harder to extract relative to s (lower ratios),
the classifier requires much more statistical evidence during training (higher s-only rate) in order to
achieve low error. We find similar patterns GPT2 and RoBERTa; see Appendix A for all the results.

niques) is predictive of the decisions a trained model will make in practice. In particular, we
see evidence that models will tend to use imperfect features that are more readily extractable over
perfectly predictive features that are harder to extract. This insight is highly related to prior work
which has shown, e.g., that neural networks learn “easy” examples before they learn “hard” exam-
ples (Mangalam & Prabhu, 2019). Our findings additionally connect to new probing techniques
which have received significant attention in NLP but have yet to be connected to explanations of or
predictions about state-of-the-art models’ decisions in practice.

Fine-tuning may not uncover new features. The models are capable of learning both the s and
t features in isolation, so our experiments show that if the relative extractibility is highly skewed,
one feature may hide the other – a fine-tuned model may not use the harder-to-extract feature. This
suggests a pattern that seems intuitive but is in fact non-trivial: If one classifier does not pick up on
a feature readily enough, another classifier (or, rather, the same classifier trained with different data)
may not be sensitive to that feature at all. This has ramifications for how we view fine-tuning, which
is generally considered to be beneficial because it allows models to learn new, task-relevant features.
Our findings suggest that if the needed feature is not already extractable-enough after pretraining,
fine-tuning may not have the desired effect.

Probing classifiers can be viewed as measures of a pre-trained representation’s inductive bi-
ases. Analysis with probing classifiers has primarily focused on whether important linguistic fea-
tures can be decoded from representations at better-than-baseline rates, but there has been little
insight about what it would mean for a representations’ encoding of a feature to be “sufficient”.
Based on these experiments, we argue that a feature is “sufficiently” encoded if it is as available to
the model as are surface features of the text. For example, if a fine-tuned model can access features
about a word’s semantic role as easily as it can access features about that word’s lexical identity, the
model may need little (or no) explicit training signal to prefer a decision rule based on the former
structural feature. The desire for models with such behavior motivates the development of architec-
tures with explicit inductive biases (e.g., TreeRNNs). Evidence that similar generalization behavior

8

Results

When target is much harder to extract than 
spurious…model requires substantial training 

incentive (e.g., 5% of training examples).



Do NNs apply 
systematic rules?

(NLP/Syntax)

Frequency Effects on Syntactic 
Rule Learning in Transformers 

Wei et al (under review)

if 

then 

else

P

P
run

The 
dog 
___

Concepts Rules

dog

run

runs S

S

S

P

⚠

runs
The 
dog 
___ dog

runs

run

+

Do NNs have 
symbolic concepts?

Unit Testing for Concepts in 
Neural Networks  

Lovering & Pavlick (in progress)

(Computer Vision)

✅ is_grounded 

✅ is_token_of_type 

⚠ is_contxt_independent 

⛔ is_causal

-
-

-

Why don’t NNs use 
symbols and rules, 
even if they can?
(Toy, NLP/Syntax)

Predicting Inductive Biases of 
Pretrained Models 

Lovering et al (ICLR, 2021)

-

-
--

-

Train

Test

Test



Do NNs apply 
systematic rules?

(NLP/Syntax)

Frequency Effects on Syntactic 
Rule Learning in Transformers 

Wei et al (under review)

if 

then 

else

P

P
run

The 
dog 
___

Concepts Rules

dog

run

runs S

S

S

P

⚠

runs
The 
dog 
___ dog

runs

run

+

Do NNs have 
symbolic concepts?

Unit Testing for Concepts in 
Neural Networks  

Lovering & Pavlick (in progress)

(Computer Vision)

✅ is_grounded 

✅ is_token_of_type 

⚠ is_contxt_independent 

⛔ is_causal -

Predicting Inductive Biases of 
Pretrained Models 

Lovering et al (ICLR, 2021)

0

0.5

1

Why don’t NNs use 
symbols and rules, 
even if they can?
(Toy, NLP/Syntax)



Do NNs apply 
systematic rules?

(NLP/Syntax)

Frequency Effects on Syntactic 
Rule Learning in Transformers 

Wei et al (under review)

if 

then 

else

P

P
run

The 
dog 
___

Concepts Rules

dog

run

runs S

S

S

P

⚠

runs
The 
dog 
___ dog

runs

run

+

Do NNs have 
symbolic concepts?

Unit Testing for Concepts in 
Neural Networks  

Lovering & Pavlick (in progress)

(Computer Vision)

✅ is_grounded 

✅ is_token_of_type 

⚠ is_contxt_independent 

⛔ is_causal

• Models don’t necessarily solve the 
task the best way…even when they 
are capable of doing so

• Models sometimes struggled to 
overcome strong training data priors

• But, when feature representations are 
sufficiently well encoded, models 
show correct inductive biases and 
generalize well despite little/no 
training incentive to do so

Predicting Inductive Biases of 
Pretrained Models 

Lovering et al (ICLR, 2021)

0

0.5

1

Why don’t NNs use 
symbols and rules, 
even if they can?
(Toy, NLP/Syntax)



Do NNs apply 
systematic rules?

(NLP/Syntax)

Frequency Effects on Syntactic 
Rule Learning in Transformers 

Wei et al (under review)

if 

then 

else

P

P
run

The 
dog 
___

Concepts Rules

dog

run

runs S

S

S

P

⚠

runs
The 
dog 
___ dog

runs

run

+

Do NNs have 
symbolic concepts?

Unit Testing for Concepts in 
Neural Networks  

Lovering & Pavlick (in progress)

(Computer Vision)

✅ is_grounded 

✅ is_token_of_type 

⚠ is_contxt_independent 

⛔ is_causal

• Models don’t necessarily solve the 
task the best way…even when they 
are capable of doing so

• Models sometimes struggled to 
overcome strong training data priors

• But, when feature representations are 
sufficiently well encoded, models 
show correct inductive biases and 
generalize well despite little/no 
training incentive to do so

Predicting Inductive Biases of 
Pretrained Models 

Lovering et al (ICLR, 2021)

0

0.5

1

Why don’t NNs use 
symbols and rules, 
even if they can?
(Toy, NLP/Syntax)



Do NNs apply 
systematic rules?

(NLP/Syntax)

Frequency Effects on Syntactic 
Rule Learning in Transformers 

Wei et al (under review)

if 

then 

else

P

P
run

The 
dog 
___

Concepts Rules

dog

run

runs S

S

S

P

⚠

runs
The 
dog 
___ dog

runs

run

+

Do NNs have 
symbolic concepts?

Unit Testing for Concepts in 
Neural Networks  

Lovering & Pavlick (in progress)

(Computer Vision)

✅ is_grounded 

✅ is_token_of_type 

⚠ is_contxt_independent 

⛔ is_causal

• Models don’t necessarily solve the 
task the best way…even when they 
are capable of doing so

• Models sometimes struggled to 
overcome strong training data priors

• But, when feature representations are 
sufficiently well encoded, models 
show correct inductive biases and 
generalize well despite little/no 
training incentive to do so

Predicting Inductive Biases of 
Pretrained Models 

Lovering et al (ICLR, 2021)

0

0.5

1

Why don’t NNs use 
symbols and rules, 
even if they can?
(Toy, NLP/Syntax)



the dog that chases cats [MASK]

the dog that chases cats runs

Predicting Agreement 
Features



the dog that chases cats [MASK]

Predicting Agreement 
Features

Freeze



the dog that chases cats runs

Predicting Agreement 
Features

Freeze

MLP

Sing. Plur.


