Corpus Annotation, Parsing, and Inference
for Episodic Logic Type Structure

Gene Louis Kim
University of South Florida

ILFC
14 June 2022

What does it mean to
understand language?

Al-complete?

To understand language

(} \’ 1. parse the structure mf
N

2. relate to world knowledge
3. consider the participants ¢

Distributional .

Feature of Symbolic Systems

Effect of single interactions on
e complex plans
e model of the world

Interface for world model & communicative intent
— Language Meaning (Bender & Koller 2020)

Symbols for Language Meaning

Shared across languages: purpose + human cognition

e truth/falsity

e predicates FOL

e [dentity

e generalized quantifiers most, few, many, no, at most 10

e modification very, gracefully, nearly, possibly

e reification Beavty ic subjective. That exoplanets exist ic now certfain.
e event reference Many children had not been vaccinated against measles;

this citvation caused sporadic outbreaks of the diseace.

* comparatives Doorwaye are taller than most people

Proposal

Bridge the gap with Gt runc”
a type system D +D—>T)=T
n Cpot” “rune”
ambiguity ,
‘there”

Unscoped Episodic Logical Forms (ULF)

Underspecified Expressive Logic

ULF Parsing

Neural Model Over a Transition System

ULF Inference
Pragmatic Discourse and Natural Logic

Wider Use of ULF

Spatial Reasoning Agent & Schema Learning

Design of ULF

Episodic Logic (EL)

e Extended FOL

e Closely matches expressivity of natural languages
o Predicates, connectives, quantifiers, equality

Predicate and sentence modification

Predicate and sentence reification

Generalized quantifiers

Intensional predicates

Reference to events and situations

O O O O O

EL Inference

e Suitable for deductive and uncertain
Inference

e EPILOG for fast and comprehensive theorem
proving

Morbini and Schubert, 2009; Schubert and Hwang, 2000; Schubert, 2014 11

How hard is it to annotate and
parse Episodic Logic?

“T" want to dance in my new choes” | —

Episodic Logic)\

(Je: |e at-about Now]|
[[Gene wantl.v
(ka (Ax: ||z dancel.v] A
(vy: ||y shoes.n] A
'y poss-by (Gene| A
 in-wear y|])]))] ** e])

Errors for 1 in 3 verb definitions! (Kim and Schubert, 2016)

13

What if we leave things that are
ambiguous without context?

“T" want to dance in my new choes” | —

Episodic Logic />\ Unscoped Logical Form /}\.
(Je: [e at-about Now] (i.pro ((pres want.v)
[[Gene wantl.v > (to (dance.v

(adv-a (in.p (my.d ((mod-n new.a)

(ka (Az: [[x dancel.v] A
(plur shoe.n))

(vy: [ly shoes.n] A
ly poss-by Gene| A

[z in-wear y]])]))] *x e])

1. Retain ambiguity of

a. Scopes

b. word sense

c. anaphora

d. event relations
2. Maintain semantic coherence
3. Reflect syntactic structure

’
|
|

"want.v — wa

\

Key

structure flow
information fi

(Partially)
—Statistical—

Anaphora

x — |Cake3|

. she.pro — |E

eat.v — eat]l.

cake.n — ca

——Symbolic

English Ske wants to eat the cake.
______ li)_}s_uf_zé_"" _
ULEF (3he.pro ((pres want.v)
(Unscoped) (to (eat.v (the.d cake.n)))))
? Stoping
SLE (pres (the.d x (x cake.n) :
(Scoped) (she.pro (want.v (to (eat.v x)))))) i
“““ *) eindegg bod Canonioatiztion. |
(llE|.sk at-about.p |Nowl17]|),
CLK I (qthe.d x (x cake.n)
(Contexfual) (she.pro (want.v (to (eat.v x))))) ** |E|.sk)
7777777 CI8].sk at-alout.p NewiZ D),
.. ((liChell] (Jwant1 .v (to (eatl .v |Cake3]|)))) |
= x |E|.sk) l

16

ULF & Syntax

Nmmatical Structure

Adam placed John under arrest.”

Word Order / / I \ \

(|Adam| ((past place.v) |John| (under.p (k arrest.n))))

verb preposition noun

Part-of-Speech

17

ULF & Semantics o ma e

S Situations
2 Truth-value

(5—2)

Monadic Predicate
N:(D—(S—2)

Semantic Types

(|Adam| ((past place.v) |John| (under.p (k arrest.n))))

| /N V1]

D tense (D—(N—N)) D (D—N) (N—D) N

18

ULF & Semantics o ma e

S Situations
2 Truth-value

Alice thinke that John nearly fell” Monadic Predicate

(|Alice| (((pres think.v) |
- ((|:;ohn\1 (nearly.adv-a (past fall.v))))))) N:(D—=(S—2)

“You made the order for me”
(you.pro ((past make.v) (the.d order.n) ((for.p me.pro))))

Determiner (N — D): the.d
(N = (N = N)):

Predicate modifier (N — N). nearly.adv-a

(S§—2)—>D):

“T" want to dance in my new choes” | —

Episodic Logic /) Unscoped Logical Form)\

(Je: [e at-about Now] (i.pro ((pres want.v)
[[Gene want1l.v > (to (dance.v
(ka (Az: [[z dancel.v] A (adv-a (in.p (my.d ((mod-n new.a)
(vy: [ly shoes.n] A (plur shoe.n))
ly poss-by Gene| A

[z in-wear y]])]))] ** €])

Dataset

20

“T" want to dance in my new choes” | —

Episodic Logic /) Unscoped Logical Form)\

(Je: [e at-about Now]

(i.pro ((pres want.v)
[[Gene want1l.v > (to (dance.v

(ka (Az: [[x dancel.v] A (adv-a (in.p (my.d ((mod-n new.a)
(vy: [ly shoes.n] A (plur shoe.n))
[y poss-by Gene| A

[z in-wear y]])]))] ** €])

Dataset & Parser

21

Dataset Annotation

Human ULF annotations
e are fast

Episodic Logic Annotator | Losedn e genchi
Written by ‘

(~8 min/sent) [

Human Annotator

® are consistent
(up to 0.88 I1AA)

T
not.adv-s (give.v it

| don't know if
save

(she.pro ((pres want.v)
(to (eat.v (the.d cake.n)))))

22

Data (ULF Release)

Trained student annotators
+

Reviewed by an expert annotator

Text Sources
Tatoeba (crowd-sourced translations)

Project Gutenberg (100 most popular)
Discourse Graphbank (WSJ subset) [Wolf, 2005]
UIUC Question Classification [Li & Roth, 2002]

1,738 sentences

.0 ° Tatoeba

23

Parsing into ULF

Viet Duong
UR

Xin (Lucy) Lu
Stanford
(formerly UR)

.ﬂ;.
y
TS
i ,
At ‘ (i
il

Lenhart Schubert
UR

25

Can we actually learn a parser from English
to ULF?

Challenge
Relatively modest dataset size

26

Parser Design

ULF-oriented |
transition system eural action selector

Transition System
WordGen BiLSTM ‘
(¢}
Name, (@] Update
NoPop Lemma, © Hard Attention
Token /' NAMEGEN, :
LeMMAGEN, : Action Distribution
MergeBuf TOKENGEN °®
®
©
© —
g State Features 8 :MLP
P\ teArc 4 H
PromoteSym RO AE romo 8 8
%) e
@ Concatenate : :
(©] LSTM
NoPromote’ ‘ Action Decoder
PROMOTE Pushldx

27

Cache Transition System

Initialize with empty stack & cache,
buffer of node labels

1.
2.

Shift: add buffer node to graph

Push: insert shifted node to
cache (move prior one to stack)

. Arc: make edges in cache

Pop: remove rightmost cache
element (move elements to right)

Stack

(1,B)
(1,A)

28

How do we tailor this to ULF?

Node label regularity

Word ULF

‘ran” run.v

“Valuable” valuable.a

“o,bfm‘on” opinion.n AMR
‘able” able.a possible-01
‘must” must.aux-s obligate-01

Coke” |Coke| .n

Structure-based Node Labels

Type-shifter
Kk

ka

that

adv-a

operates on

Operand

noun predicates (k gold.n)

verb predicates (ka (run.v quickly.adv-a))

sentences (that (i.pro (past win.v)))

any predicates (adv-a (for.p you.pro))

31

Gen*

“ ” -V
ran —P run.v

(14 7 'a
Stack Cache Buffer refreched ||—> refreshed.a
17 7 . N
Coke ——» |Coke]| .n
Pop
v = X
Push | _ Gen
o= TN—
(2,D°) 1 2 F GH ..
asy |l [e] [E Promote
(|| S \/ﬂ)
.
Arc Promote dog.n ——3p (k dog.n)
. dv -
quick.a 2V 8 (adv-a quick.a)

(i.pro (past win.v))
ﬁ, (that (i.pro (past win.v)))

32

Transition System Procedure

Initialize with empty stack & cache, Stack| Cache | Buffer
buffer of word sequence.

Pop

1. Gen: generate a symbol and add

)
to tree B’ e
L v O

2. Push: insert gen’d node to cache Arc Promote

3. Arc: make edges in cache

4. Promote: type-shift rightmost
cache element

5. Pop: remove rightmost cache
element (move elements to right)

How do we train an action selector?

Labeled ULF + Alignment

‘Adam placed John under arrest”

Oracle

'

WordGen — Name — Suffix(null) —
Push(1) — NoArc — NoPromote — NoPop —
WordGen — Lemma — Suffix(v) — ...

Parsing Action Sequence

35

Oracle

Gen & Arc

Greedy symbol and edge generation
while tracking word-symbol alignment

Skip words if their alignment is earlier than predicted

Push

Choose the cache index whose closest
edge or path including only promoted
symbols into buffer is farthest away

Unaligned symbols may be generated via promote

Promote

If promoted gold edge exists to
rightmost cache item and child
is fully formed, add it.

Bottom-up enforced for Promote & Type
Constrained Decoding

36

Transition System

Stack

Cache Buffer
/J Pop IEP : -
us ' Gen* |
~
e e

37

Transition System

/J Pop I3

Push

Stack Cache

Buffer

—|| @D 1 2

F GH ..

(1,8 cl| [e
(1 ’A!) I_

|

I

Promote

Update

AN

-
Action Distribution

MLP

38

f BiLSTM \

——————————————

What —b.—» : : : :—».)
did —@ — | o ' —@
you —@— | o —
buy —@ — | E : E—».
7 —@— ! ! @

Word Sequence

Hard Attention

Transition System

Gen* [[77,

Stack Cache Buffer
J Pop
i Push |._\
L TN— Ly
(2,0’ 1 2 FGH .|
(1,B%) c’ E §
(1,A°) A NS0

Update

GloVe + RoBERTa + CharCNN + lemmas + POS + NER

Action Distribution

MLP

39

f BiLSTM \

——————————————

What —b.—» : ; : —>.)
did —@ — | o —@
you —@— | o —
buy —@ — | E : E —Q0
7 —@— ! ! @
= =i
EEe
sub —@ — . @)
what.pro —@ —— — O
past —@ — — @
do.aux-s —@ — — O
you.pro —@ — — O
buyv —@ — — O
*h —@ O
°: @ — — @
. L2 J
LSTM

Hard Attention

Transition System

Stack Cache Buffer
J Pop l? '
4 Gen* ||,
| Push |._\.\ N en "\ ’/’-,
20" 1 2 ||[F6H .|
1) |c| B
A S5

(1.A)

Update

Symbol Sequence

Symbol + CharCNN (of aligned word)

AN

~
Action Distribution

MLP

40

Transition System

f BIiLSTM \ Stack Cache Buffer
What _.._. E_..w JP°P13 | ("
o _ .._. ' X : —8 i Push |l i Con* § Update
you ! ¥ @ Hard Attention 20| [1 i - <
buy —@—) | | —9 18) ||| [e] [e
? —@—| o '— @ (1.A) A
: Al I A : ~) P
: P S T : Arc Action Distribution
R =
o' 2 e —
_________ |) — o
— 000000 o —
sub —@ — — @) State Features - @ %‘
what.pro —@ — — @ —— @
past —@ — — O —— @
do.aux-s —@ — — @ — @
you.pro —@ — —— O -~ @
buyv —@ — — O / > > O
*h —@ o Concatenate : :
> @ — © LSTM
: 2) | S—
LSTM Action Decoder

41

/ BiLSTM \

Hard Attention

Transition System

What —-@ — | | —@®)
did —@ —| | o N —@
you —@— ! ! @
buy —@— | o ' —@

» —@— (! (BN —e
8 B

=HEe

sub —@ —— — O)
what.pro —@ — — O
past —@ — — @
do.aux-s —@ — — O
you.pro —@ — — O

buyv —@ — — O

*h —@ O
? @ — — @
: ©)
LSTM

Action Decoder

Stack Cache Buffer
JPop i
‘ iPPush l—~.\ Gen' Update)
W™~ BN h
Hard Attention
Deterministic Alignment
=T—s
— @
— @
> > O
Concatenate : :
LSTM

42

Transition State Features

Always: Current Phase

Pop/*Gen: rightmost cache +
leftmost buffer token,

dependency, and ULF arc features

Arc/Promote: two cache position

token, dependency, and ULF arc
features; dependencies between
them

\

N

Transition System

Buffer

Gen*

—_~—~—
L T
> WO

SR

(@0000-0)

State Features

N

F GH ..
,’\\

1A

) Update N

"

LSTM I

Concatenate

LSTM
S

—
—
—
—
—
—
—

Action Decoder

- 00000000

~

i

Action Distribution

Experimental Detalils

Data Split (~8/1/1)

1,738 sentences

1,378 train
180 dev
180 test

SemBLEU

Extends BLEU to graphs. Based on
overlaps of path segments in a graph.
[Song & Gildea 2019]

EL-Smatch

Extends smatch to non-atomic
operators. Computes node alignment
with highest possible overlap of node
and edge labels. [Kai & Knight, 2013;
Kim & Schubert, 2016]

Comparison to Baselines

B (Zhang et al., 2019) = (Cai and Lam, 2020) = Our Best

SemBLEU

EL-Smatch

Baselines

Strong AMR parsers w/ minimal
AMR-specific assumptions

They struggle on node-label prediction
e dataset is too small

45

Inference with ULF

Graeme McGuire

Formerly UR

Sophie Sackstein Muskaan Mendiratta
Booz Allen Hamilton Barclays
Formerly UR Formerly UR

Benjamin Kane
UR William & Mary Amazon

Viet Duong

Formerly UR

Georgiy Platonov

Formerly UR

Lenhar

!

N

i w? dl
AL \

chubert
UR

47

questions
requests
counterfactuals

clause-taking verbs

“How soon can you get that done?” | 7~ N\ ¥ | “You can get that done”
“l want and expect you

111 ?”
Could you put your seat back up: N> e e

Via ULF
“Il wish | had turned off the stove” N\ | ‘I didn’t turn off the stove”
“ : _ “John thinks that | am
John suspects that I'm lying N> iobaBl ek

48

((sub what.pro
((past do.aux-s)
you.pro (buy.v *h))) ?)

‘wWhat did you éuy? 7
Generation

Structure
simple symbolic transformations

Type System You did buy comething”

maintain semantic coherence (yoy.pro ((past do.aux-s)
(buy.v something.pro)))

49

((sub what.pro
((past do.aux-s)
you.pro (buy.v *h))) ?)

Abat did \WA De-topicalization

“did you éuy what”

you did buy comething”

(you.pro ((past do.aux-s)
(buy.v something.pro)))

50

((sub what.pro
((past do.aux-s)
you.pro (buy.v *h))) 7?)

‘what did you buy?” Un-inversion

‘did you buy what”

~

You did buy what”

you did buy comething”

(you.pro ((past do.aux-s)
(buy.v something.pro)))

51

((sub what.pro
((past do.aux-s)
you.pro (buy.v *h))) ?)

what did you buy?” De-questioning

"did you buy what?”

“you did buy what?”

—<

‘you did buy comething”

(you.pro ((past do.aux-s)
(buy.v something.pro)))

52

Experimental Detalils

Precision
Freely generate inferences and judgea 127 inferences

sample with human evaluators
e 3 or 4 evaluations per inference

Recall

Get human inferences for a sample of _
sentences and check coverage that 698 inferences
the automatic inferences achieve 406 sentences

e annotators are trained for these phenomena

Precision Evaluation

[‘How soon can you get that done?”] C 0 rre Ct 68 . 5 %

[AA

e " Contextual 15.0%
£LY !

roman [(o sy Incorrect 16.5%

. aux- ro
(get.v that.pro done.a *h))) ?)
1

Automatic

y

Inferred ULFs

el Grammatical 78.0%

Inferred Sentences

O . O . H Automatic

54

Recall Evaluation

_I Gold Inferences
—————————————————————————— Inferred ULFs “You can get that done”

((sub (adv-e (how.mod-a soon.a)) I “ Y
ULF ((pres can.aux-v) you.pro (get.v that.pro done.a *h))) ?) | l:_:- | want and expect you to get that done 8

Select
Inferred Sentences ,lCIosest
- Match

® O -

N

Inference Rule Raw Inferences

ny n

=

1. Basic Inference

2. Paraphrasing & Coordination [In ULF]

T want you to get that done” + I expect you to get that done”— T want and expect you to get that done”

3. Translate to English
(i.pro (((pres want.v) and.cc (pres expect.v)) you.pro (to (get.v that.pro done.a))))
— T want and expect you to get that done”

4. Select closest match with minimal difference

a. Allow 3 character edit distance

Recall Evaluation

. Sentence “How soon can you get that done?” _I Gold Inferences
Inferred ULFs “You can get that done”

((sub (adv-e (how.mod-a soon.a)) | « ”
I ULF ((pres can.aux-v) you.pro (get.v that.pro done.a *h))) ?) l:_:- | want and expect you to get that done 5
T I T —

‘ Select

Inferred Sentences Closest

[ULFZEninsh m <+ | Match

Inference Rule Raw Inferences

X Ny my

S
<

Rewrite Module

Out of 662 inferences, 112 found (~17%)

*Simple baseline ~0%

Generate natural language inferences based on
syntactic structure and local semantic properties

Van Benthem et al., 1986; Sanchez Valencia, 1991

Monotonicity Inference

Specialization and generalization inferences based
on contexts imposed by polarity operators

Some delegates (finished the survey on time)™*
= Some delegates finished the survey

I never had a (girlfriend)Y before
= I never had a girlfriend taller than me before

Exactly 12 aliens read (magazines)™
<> Exactly 12 aliens read (news magazines)™

58

Sanchez Valencia

(@0 oo
+
o)

+

abelard
e

. carp
T ()%, ((e,0)%,1) (et)
+ + +

oy« R (%)
+ +

sees

(e;(est)) ea fish

belard

e (e,t) a fish
t

Lambek Derivations T e denfenn fo
Tableau-style proofs

‘abelard cees a carp” y .
ﬁ Aé&/a,l’c{ fees a ﬂgh

‘every carp i a fich”

Replace Lambek derivations

and sentences with ULFs
(|Abelard]| (see.v (a.d fish.n)))

(]Abelard| (see.v (a.d carp.n)))

ULF

59

Mandar Juvekar
UR

Viet Duong
UR

Junis Ekmekciu
UR

Lenhart

Il ':‘\“\‘ T

Schubert

UR

60

Sanchez Valencia’s System

Monotonicity
(every x)* is ay, F(z 1), X

(every)% is a y, F(y), X

I

Y
Y

Inference 1 abelard sees a carp, every carp is a fish / abelard sees a fish

sees

(er(e) € corp
(e,t)

o sees
- Bamonieag 6 4 168 PO D Y o
a ar)] e e,t a o
(&%, (e8),1) (e,1) o R B 0 enunn 6
ir ar ((e,2),2) (e,2) (e,t) ((e,t),t)
(70 i :

abelard
e

+

—

+3

=

abe see a carp, every carp is a fish @ abe see a fish

abe sees (a carp)#, (every carp)# 1s a fish ® abe sees (a ﬁsh)# marking

abe sees (a carp™)™, (every carp)” is a fish ® abe sees (a fish)” marking

abe sees (a ﬁsh)#, (every carp)# 1s a fish ® abe sees (a ﬁsh)# monotonicity

61

Natural Logic with ULFs

‘Abelard seec a carp” 1. (IAbelard| (see.v (a.d carp.n))) Assumption

‘Every carp ic a fich” 2. ((every.d carp.n) (be.v (= (a.d fish.n)))) Assumption

3. (ad z: (z carp.n)t SLF of 1.
(IAbelard! (see.v z)")™) w/ polarity
4. (IAbelardl (see.v (a.d cal'p.n)+)) Pol marking
v W B
“Dbelard ceec a frch” . (IAbelardl (see.v (a.d fish.n))) UMI 2..4.

Monotonicity (UMI)
#[(6 P1)™], ((every.d P1) (be.v (= (a.d P2))))
9[(6 P2)]

where J is a determiner.

Data

Premises Some delegates finished the survey on time
Hypothesis Some delegates finished the survey

Label ENTAILMENT

FraCaS Generalized Quantifiers (GQs)
1. Curated by linguists
2. Largest section of FraCaS (80/346, 23 %)
3. Quantifiers impose polarities on restrictor and scope

64

Inference System

ULF Transducer

| R g rccec s v
ULFs ‘Q\ > KB | Inference Rules ‘ ? Goal
— - : , —
: RN |
4 Polarity Marker : - | ——
i |
e Q\\ N - >, - CONTRADICTION /
f ENTN UNKNOWN
Constituency : ~ &
Parser _
r &
premises hypothesis ::1“'|8|I’Ba¢kuP Stanford CoreNLP
. . . . M:ra:(retry ULF2English

66

ULF Transducer

ULFs

N

syntax trees

v
5

| ______________ y
- KB ' Inference Rules | ? Goal
3 g, ONY
Polarity Marker : JJ |
i e ENTAILMENT /
N\ CONTRADICTION /
% oy e UNKNOWN
X
Initial/Backup Stanford CoreNLP

premises hypothesis

Polarity
Marker

ULF2English

67

ULF Transducer (ADJP (33 <w>)) <w>.a

| (ADVP (RB <w>)) <w>.adv-e
e /}.‘ I o [O‘. (|Abe| ((past see.v) (every.d ﬁsh.n)))}

T. (VBD <w>) (past <w>.v)
et | Tree transduction rules T
?

syntax trees />,\\ [/>\ (S (NP (NNP ABE)) (VP (VBD SAW) (NP (DT EVERY) (NN FISH))))}

“hee |Berkeley neural parser T
o ‘ | ‘Abe caw every fich”
remises hypothesis
(X X I

Why not a trained 1. Short, grammatical sentences
ULF parser? 2. Errors are more regular and predictable

ULF Transducer

B e [|
ULFs ‘O\ y Inference Rules : ? Goal
t PN | o), == N
ransduction !
. Pat?ernts . -()‘0 JJ : l
f .
— L ENTAILMENT /
. o CONTRADICTION /
T UNKNOWN
Constituency
Parser
premises*i:,/p othesid B
X X

69

Initial Polarity Marking

9 .- [O\ (|Abe| ((past see.v) (every.d ﬁsh.n)))}

! ULF2English ¢

Polarity Marker
‘Abe caw every fich”
N - /
205 Natlog ¢
| (Stanford CoreNLP)

A A g |
lnitiaIIBacku;: Star'ifordCoreNLP Aée-‘— CAW-F every+ ,4 .gh
Polarity
Marker ULF2English

Align + scopes ¢

[‘% (|Abe|" ((past” see.v")" (every.d”

— 1 =N NN
IS)))

Polarity Propagation

.~ KB [()‘ ‘Abe caw a dog without o tail” }
e
'
Polarity Marker (X S (x ‘Every c(ag without a tail is a dog” “Ube caw a dog
N < “Abe raw 2 a0 w/tAaut a tail”
A= - \
| 4
il \
Initial/Backup Stanford CoreNLP
Polarity
Marker ULF2English

[.% Aée saw a c{og without a tail” }

71

ULF Transducer
| '
ULFs @}@J — KB ? Sl
y & -
T 0}3}}@ T % —_—
Transduction * l
Patterns
4 Polarity Marker
ENTAILMENT /
syntax trees A\
g = .9,. CONTRADICTION /
! ” -» UNKNOWN
Constituency
Parser
2 4
premises hypothesis Initial/Backup Stanford CoreNLP
- = Polarity
O Marker ULF2English

72

_______________ 1. Monotonicity Substitution

2. Conversion

|
|
| : Every Ais a B + S[A+] = S[B]
I
|
|
|

SR | ——————— SomeAisaB < SomeBisanA

3. Conservativity

DET As are Bs < DET As are As that/who are Bs

4. Equivalences

e.qg., Every dog is happy < All dogs are happy

ULF Transducer

Transduction
Patterns

syntax trees />\

r 7 \

T

Constituency
Parser

4

premises

X XK I .

ULFs

B

A

KB
2,
7

L 4

+
Polarity Marker

0

-)\

2. =N

l t
r A
Initial/Backup
Polarity
Marker

Stanford CoreNLP

ULF2English

v
? Goal

W W B W W W e mee wee w

=

|

ENTAILMENT /
CONTRADICTION /
UNKNOWN

74

‘ Search: Interleaved heuristic and breadth-first
2 Goal search
mpp— (},. — m maintain completeness with simple/quick heuristic
Cgﬁ;é\kmg;ﬂlyrq / Heuristic: F1 score between atoms of new
UNKNOWN formula and goal

ENTAILMENT : exact match
CONTRADICTION : top-level negation + exact match
UNKNOWN : reached max # of steps or exhausted all inferences

75

Results

80

60

40

20

FraCaS GQ Performance

Single-premise

Multi-premise

Overall

B Baseline
B Us

77

Wider Use of ULF

Spatial Reasoning

Time Scene Memory Facts (query) Facts (embed)
(1B| touching.p |A|)
™ INowol (you ((past ask.v) ...) (|B] touching.p |C|) None
David I
i (ID] ((past move.v) (|B| touching.p |A])
|[Now1| ' (from.p-arg ($ loc 1 1)) (1B] touching.p |C]) None
j ? . T (to.p-arg (§ loc 21)))
i i (IB] touching.p |A|)
- INow2| —d_ (you ((past ask.v) ...) (IB| touching.p [C]) None
(IB] ((past move.v)
INow3| (from.p-arg ($ loc 10)) (1B] (past move.v)
(to.p-arg (S loc 01)))
""""" (ID] ((past move.v)
|N0w4| (from.p-arg ($ loc 2 1)) . None
,‘. (to.p-arg (S loc 0 2))))
IN°w5| (you ((past ask.v) ...) . Nooe
\ (IA] at-loc.p ($ loc 0 0))
H . (I1B] at-loc.p ($ loc 1 0))
Perceive-world.v: {1C] stdoon (8 loo 2 0

(ID] at-loc.p ($ loc 1 1))

“What blocks did B touch before | moved it?”

Parse

((sub (what.d (plur block.n)) ((past do.aux-s) |B| (touch.v *h (before.ps (l.pro ((past move.v) |B|)))))) ?)

; \/ Inferred unary adv-e .L Uninverted base ULF \l Lifted binary adv-e
g > (adv-e (most.mod-a recent.a)) (|B| touching.p (what.d (plur block.n))) (before.ps (l.pro ((past move.v) |B|))))
| B 'L Map to subset of times subject \L Resolve;arguments R:::;:e ,:Z?:,si;d

[Nowz2| o tempors! constaint (IB| touching.p ?x) (adv-e (before.p [Now3|))

Determine times at which

l \ J, proposition holds, subject to
temporal constraint
B| touching.p |A

Generate response ULF by uninverting and
making appropriate substitution

(IB| ((past touch.v) (set-of [A| [C])) — “B touched A and C”

79

Hey David, what block is next to
Target block?

Fhe-Starbueks-blockisrextto-the
farget-block

\1/

There are no blocks next to the
Starbucks block

80

Schema Learning

(EPI-SCHEMA ((?X_B CLIMB GET EAT.PR
?X_A ?X _C) %% 2?E)
:ROLES
IR1 (?X_A TREE.N)
IR2 (?X_C INANIMATE_OBJECT.N)
IR3 (?X_B MONKEY.N)
IR4 (?X_C FOOD.N)
IR5 (?X_C COCOANUT.N)
/" :STEPS N\
?E1 (?X_B CLIMB.481.V
(FROM.P-ARG ?L1) °?X A)
?E2 (?X_B GET.511.V ?X C
(AT .P-ARG ?X _A))

?E3 (?X B EAT.541.V ?X C)
:EPISODE-RELATIONS

!'Wl (?E1 BEFORE ?E2)
W2 (?E2 BEFORE ?E3)
!'W3 (?E1 DURING ?E)
'W4 (?E2 DURING ?E)
!W5 (?E3 DURING ?E) Y

Stories

O 0 N N L B W N

Schemas

=y

._.
(=)

—
f—

—
Proto-Schemas

—
w N

—_
~

—
W

_—
@)

—_
(o]

=]

-

[\
p—
A d

Conclusion

ULF Summarized

Type system + syntax for easy access expressive
semantics. This enables

e Sufficient data collection speed and consistency
e Parsability with modest data size
e Syntax-related inferences

e Use in larger language interfacing systems

@)|

{MELIORA J7

R UNIVERSITY of

OCHESTER

Funded in part by multiple NSF grants and a
University of Rochester Sproull Fellowship

85

