
Unitary Matrices As Compositional Word Embeddings

Jean-Philippe Bernardy Shalom Lappin

May 16, 2022

Theoretical linguistics is focussed on constructing theories that unify a variety of phenom-

ena. A key characteristics of such theories is compositionality. The core of this property is the

requirement that the content of a phrase is a function of the contents of its constituents. A

weakness of many such theories is that they are brittle. That is, they break easily when applied

at scale, because they do not cover the range of variation exhibited in real corpora. By contrast,

statistical models, including recurrent neural networks (Hochreiter and Schmidhuber, 1997), do

handle this variation, through Bayesian-style learning over a large parameter space. However,

as these models improve in accuracy and coverage (Brown et al., 2020; Devlin et al., 2018;

Solaiman et al., 2019; Yang et al., 2019), they become increasingly complex and less amenable

to theoretical analysis. Thus, the gap between them and theoretical approaches expands.

In this abstract, we propose unitary-evolution recurrent neural networks (URNs) as a

candidate to bridge this gap. URNs are both compositional by design and end-to-end trainable

as statistical models. By the de�nition of unitary-evolution, at each step of the input sequence,

a unitary transformation is applied to the state of the RNN. No activation function is applied

between time-steps. Therefore, each input symbol can be interpreted as a unitary transforma-

tion, or equivalently as a unitary matrix. We can view the unitary matrices learned by a URN

as unitary word embeddings. Because unitary matrices form a group, such embeddings can be

composed and they constitute unitary embeddings for complex phrases.
1

A consequence of compositionality is that the e�ect of embeddings can be analysed in-

dependently of context. Other statistical models (LSTMs, transformer) can only be analysed

through black box testing methods, such as probing techniques (Hewitt and Manning, 2019). It

is thus di�cult to ascertain the syntactic structure that such models may encode.

Because unitary transformations are reversible, long distance dependency relations can, in

principle, be reliably and e�ciently recognised, without additional special-purpose machinery

of the kind that (LSTM) RNNs require. This has been demonstrated to for copying and adding

tasks (Arjovsky, Shah, and Bengio, 2016; Jing et al., 2017; Vorontsov et al., 2017). We show

additionally that long-distance dependency e�ects are exhibited for several linguistically

relevant syntactic tasks: (i) bracket matching in a generalised Dyck language, and (ii) the more

challenging task of subject-verb number agreement in English.

1
By constrast, the word embeddings that other deep neural networks learn are generally encoded as vectors.

Combining such vector word embeddings into phrasal and sentence vectors is achieved through various ad-hoc,

task-speci�c means, such as adding another trainable layer in the model. Each such a layer is a complicated,

opaque model of its own. There is no compositionality as such.

1



×

×

s1

y0
A

exp

Q(x0)

emb

S(x0)

x0

×

×

s2

y1
A

exp

Q(x1)

emb

S(x1)

x1

×

×

s3

y2
A

exp

Q(x2)

emb

S(x2)

x2

×

×

s4

y3
A

exp

Q(x3)

emb

S(x3)

x3

Figure 1: Each input symbol xi indexes

an embedding layer, yielding a skew-

symmetric matrix S(xi). Taking its expo-

nential yields an orthogonal matrix Q(xi).
Multiplying the state si by Q(xi) yields

the next state, si+1.

URN architecture Since the simple recurrent

networks of Elman (1990), the dominant architec-

tures RNNs, including the in�uential LSTM Hochre-

iter and Schmidhuber, 1997, use non-linear activa-

tion functions (sigmoid , tanh , ReLU). By contrast

our URNs invoke only linear cells. In fact, the cell

that we use is a linear transformation of the unitary

space, so that it takes unit state vectors to unit state

vectors, hence the term “unitary-evolution”.

For predictions, we extract a probability distri-

bution from state vectors by applying a dense layer

with softmax activation to each vector state si.
We need to ensure that Q(x) is (and remains)

orthogonal when it is subjected to gradient descent.

In general, subtracting a gradient from an orthog-

onal matrix does not preserve orthogonality of the

matrix. So we cannot make Q(x) a simple lookup

table from symbol to orthogonal matrix, without

additional restrictions. While one could project the

matrix onto an orthogonal space (Wisdom et al.,

2016), our solution is to use a lookup table mapping

each word to a skew-hermitian matrix S(x). We

follow Hyland and Rätsch (2017) in doing this. We then let Q(x) = eS(x), which ensures the or-

thogonality of Q(x). It is not di�cult to ensure that S(x) is skew-symmetric. It su�ces to store

only the elements of S(x) above the diagonal, and let those below it be their anti-symmetric

image, with the diagonal set to zero.

Experiments Our �rst experiment applies a URN to a natural language agreement task

proposed by Linzen, Dupoux, and Golberg (2016). The model predicts the number of third

person verbs in English text, with supervised training. In the phrase “The keys to the cabinet

are on the table”, the RNN is trained to predict the plural “are” rather than the singular “is”.
Linzen, Dupoux, and Golberg (2016) point out that solving the agreement task requires

knowledge of hierarchical syntactic structure. If an RNN captures the long-distance dependen-

cies involved in agreement relations, it cannot rely solely on the linear sequence of nouns (in

particular their number in�ections) preceding the predicted verb in a sentence. Accuracy must

be sustained as the number of attractors increases. An attractor is de�ned as a noun occurring

between the subject and the verb, which has the wrong number feature for controlling the

verb. In the above example, “cabinet” is an attractor.

The second experiment evaluates the long-distance modelling capabilities of an RNN in a

way that abstracts away from the noise in natural language, by using synthetic data. Following

Bernardy (2018) we employ a (generalised) Dyck language. It is composed solely of matching

parenthesis pairs. So the strings “{([])}<>” and “{()[<>]}” are part of the language,

while “[}” is not. This experiment is an idealised version of the agreement task, where

opening parentheses correspond to subjects, and closing parentheses to verbs. An attractor

is an opening parenthesis occurring between the pair, but of a di�erent kind. Matching of

parentheses corresponds to agreement.

2



0 1 2 3 4 5 6 7 8 9 10 11 12
0.7

0.8

0.9

1

URN

LSTM, Linzen et al.

Figure 2: Accuracy per number of attractors for the verb number agreement task. Linzen,

Dupoux, and Golberg (2016) do not report performance of their LSTM past 4 attractors. Error

bars represent binomial 95% con�dence intervals. We see that the URN “solves” this task, with

error rates well under one percent. Crucially, there is no evidence of accuracy dropping as

the number of attractors increases. Even though the statistical uncertainty increases with the

number of attractors, due to decreasing numbers of examples, the URN makes no mistakes for

higher number of attractors.

0 1 2 3 4 5 6 7 8 9

0.8

0.85

0.9

0.95

1

Full URN

Arbitrary matrices

Figure 3: Accuracy of closing parenthesis prediction by number of attractors. The size of

matrices is 50 by 50.

3



References
Arjovsky, Martin, Amar Shah, and Yoshua Bengio (2016). “Unitary Evolution Recurrent Neural

Networks”. In: Proceedings of the 33rd International Conference on International Conference
on Machine Learning - Volume 48. ICML’16. New York, NY, USA: JMLR.org, pp. 1120–1128.

Bernardy, Jean-Philippe (2018). “Can RNNs Learn Nested Recursion?” In: Linguistic Issues in
Language Technology 16 (1).

Brown, T. et al. (2020). “Language Models are Few-Shot Learners”. In: ArXiv abs/2005.14165.

Devlin, Jacob et al. (2018). “Bert: Pre-training of deep bidirectional transformers for language

understanding”. In: arXiv preprint arXiv:1810.04805.

Elman, Je�rey L. (1990). “Finding structure in time”. In: Cognitive Science 14.2, pp. 179–211.

Hewitt, John and Christopher D. Manning (June 2019). “A Structural Probe for Finding Syntax

in Word Representations”. In: Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers). Minneapolis, Minnesota: Association for Computational

Linguistics, pp. 4129–4138.

Hochreiter, Sepp and Jürgen Schmidhuber (Nov. 1997). “Long short-term memory”. In: Neural
Computation 9.8, pp. 1735–1780. issn: 0899-7667. doi: 10.1162/neco.1997.9.8.1735.

Hyland, Stephanie L and Gunnar Rätsch (2017). “Learning unitary operators with help from u

(n)”. In: Thirty-First AAAI Conference on Arti�cial Intelligence.

Jing, Li et al. (2017). “Tunable E�cient Unitary Neural Networks (EUNN) and their application

to RNN”. In: arXiv.

Linzen, Tal, Emmanuel Dupoux, and Yoav Golberg (2016). “Assessing the Ability of LSTMs to

Learn Syntax-Sensitive Dependencies”. In: Transactions of the Association of Computational
Linguistics 4, pp. 521–535.

Solaiman, Irene et al. (2019). “Release Strategies and the Social Impacts of Language Models”.

In: ArXiv abs/1908.09203.

Vorontsov, Eugene et al. (2017). “On Orthogonality and Learning Recurrent Networks with

Long Term Dependencies”. In: arXiv.

Wisdom, Scott et al. (2016). “Full-capacity unitary recurrent neural networks”. In: Advances in
neural information processing systems 29, pp. 4880–4888.

Yang, Zhilin et al. (2019). “XLNet: Generalized Autoregressive Pretraining for Language Under-

standing”. In: ArXiv abs/1906.08237.

4


