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In natural language processing, an ordinary parser constructs a syntactic structure,
given the whole sentence; however, we human grasp the meaning of a given sentence
word by word sequentially. So, in this work we aim at constructing a partial semantics
structure incrementally from the beginning word of a sentence.

The compositionality principle states that the semantics is obtained in parallel to
the completion of a syntactic structure. Thus, to obtain a partial semantics we need to
assume that there is partial tree structure even in the middle of utterance. To achieve
this property, we employ combinatory categorial grammar (CCG) [3], which enables us
to acquire a semantic structure and a parsing tree simultaneously. However, those con-
ventional grammar rules in CCG are insufficient for the incremental parsing. Therefore,
we introduce new rules as a natural extension of existing formalisms, and in addition, we
implement an interactive parser that can externalize a parsing tree for each word input.

For example, we consider obtaining a tree of “Alice” and “Alice loves” from the
sentence “Alice loves Bob,” found in the incremental parsing of the sentence. Then, we
construct a partial tree whenever a new succeeding word appears, regarding it as a token
consumption. As a result, we find a left-branching tree in Figure 1, without employing
extra memory for floating tokens that are un-treed words.

love' Alice’ Bol' = S

love' Alice' : S/NP love' Alice' : S/NP

Alice’ : NP Alice’ : NP love’ : NP\(S/NP) Alice’ : NP love’ : NP\(S/NP) Bob': NP

Figure 1: Transition of the left-branching tree

From the semantic point of view, we need to preserve the semantics, that is a sequence
of terms obtained from lexical items, between the non-left-branching tree and the left-
branching tree if they consist of the same categories. This is because categorial grammar
and its derivations have a confluence property in the simply-typed lambda calculus; that
is, the reduction steps do not affect the resultant sequence of semantics terms.

From the syntactic point of view, we can generally assign multiple different categories
for each word because these categories always remain equivocal until the end of the
sentence. However, we do not argue this issue in this paper; instead, we deal with all the
possible category assignments.
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Stanjevié¢ and Steedman [2] implemented an incremental parsing algorithm employing
the tree rotation which depends on the following composition rules.

XY WA\(Y/Z)=<p W\(X/Z) WAY/Z) Y\X =5 W\(X/Z)

As the first contribution, we argue that the introduction of B? and B? in [2] are
rather haphazard and are not linguistically indispensable. In general, it is not preferable
to introduce new rules to solve certain specific language phenomena. If we admit the
introduction of B? B2 or possible introduction of B mentioned in [2], we may also
need to consider B* or more B". Considering the possibility that we may face such a
situation, we should provide a general principle to tolerate any number of arguments for
a given word. This is the reason for which we would like to reduce these binary, or n-ary
operations to unary derivation rules.

We here get back to the principles of CCG, and introduce a set of derivation rules of

D,Dx,Q,Qx.
XY =.p (X/2)/(Y/Z)  X|Y =50 (Z/X\(Z]Y)  X\Y =.p (Z\X)\(2\Y)
X\Y =< (X\2)/(Y\Z) XY =-p, (Z\X)/(Z\Y) X\Y =-0. (Z/Y)\(X\Z)
X\Y =cpe (X/2\(Y/Z) X]Y =<q. (2/Y)/(X\Z)

Here are comparisons;

« B?and B? correspond to two operations; one is the composition with two arguments
and another is to indicate the head of the constituent.

e D, Dzx, (@), and Qx correspond to the single operation that is to indicate the head
of the constituent as the same as the type-raising rules, e.g., a pair of categories
X/Y,Y is to be X/Y,(X/Y)\X in a derivation, by which we switch the argument
part to the functional part, and so do the functional part to the argument part.

Note that while we can derive B? and D? from D, Dz, (@, and Qz, the reverse does not
hold. Therefore, our extension is a generalization of the preceding work [2]. Furthermore,
our new rules are unary so that the derivation is more versatile and can derive a certain
set of sentences that are not obtained only by binary rules. Instead, the derivation steps
may increase when we employ only unary rules.

As the second contribution, we implement our CCG parser in logic programming. The
main predicate takes three arguments as in parse (Grammar, Sentence, Tree), namely,
a set of grammar rules, a sentence, and a tree. Generally, we build a constituency tree
structure from a sentence using the parser with some given grammar rules, i.e., the
building process is a sequence of unification between applicable Grammar rules and a
given Sentence. However, we can execute the parser in the reversal way, as in definite
clause grammar [1]; when we execute the unification between an input Sentence and a
parsed Tree, we can replicate a set of innate Grammar rules.

Based on these two principles, we implement an interactive and incremental CCG
parser. This system takes a sentence as input and displays the possible parsing results
in CCG. For each word input, the partial sentence is processed as follows;

1. A syntax tree is created for the partial sentence using Stanford CoreNLP. This
result is shown in the left-bottom corner of Figure 2.

2. The tree and the sentence are used to extract the grammar rules employed in the
parser. This result is shown in the left-top corner of Figure 2.

3. Based on the extracted grammar, the parser outputs all possible parsing results in
CCG. This result is shown in the right-hand side of Figure 2.



In the grammar extraction stage, the part-of-speech (POS) is regarded as a variable for
logic programming, and grammar rules are extracted by the process of unification. For
this reason, as mentioned above, the type of the partial tree is not uniquely determined,
and so all the possible grammar rules are exhaustively consulted. With this system, we
illustrate the growing process of a left-branching tree. Moreover, it also shows how the

parser builds a semantics st

ructure from a sentence.

Our future extension includes the reduction of computational complexity; the search
by Prolog is non-deterministic and exhaustive, so that the computation is not efficient.
We need to consider effective pruning in the bidirectional search, to be applicable to

practical sentence length.
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Figure 2: Interactive CCG Parser
Table 1: Extension of CCG Rules
XY Y=.X Y = (X/Y)\X
X X\Y=.V X =7 Y/(X\Y)
XY Y/Z=.5X/Z XY =.p(X/2)/(Y/Z) XY =50 (Z/X)\(Z]Y)
X\Y Y\Z=5X\Z X\Y=op(Z2\X)\Z\Y) X\Y=_(X\2)/(Y\2)
XY Z\Y =.p, Z\X X/Y =.p, (Z\X)/(Z\Y) X\Y =.0. (Z/Y)\(X\Z)
XY X\Z=_p. Z]Y X\Y = p. (X/2\Y/Z) X/Y =.q.(Z/Y)/(X\Z)
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