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Syllogistic reasoning has a long history in the philosophical study of language, dating back to
the work by Aristotle. Syllogisms are deductive arguments that consist of a set of premises and
a conclusion. They have played a crucial role in formalizing logical deduction; in formal logic,
syllogisms are classified as either valid or non-valid, where the former means that the conclusion
is necessarily true given the conjunction of the premises. Example 1 displays a valid ‘categorical’
syllogism (a syllogism consisting of exactly three categorical propositions: two premises and one
conclusion), which consists of three quantified propositions containing three distinct properties,

each of which appears in two of the three propositions.

All singers are pianists.

(1) Not all trumpet players are pianists.

Therefore: Not all trumpet players are singers

Example 1 is of the form AOO-2, as the first premise contains the quantifier ‘all’ (A), the second
premise and the conclusion the quantifier ‘not all’ (O), and the order of the described properties
(singer, pianist, play trumpet) is the second out of 4 possible ‘figures’, which define possible
configurations of the properties. Based on 4 quantifiers (all, some, no, not all) and 4 figures, a
total of 64 categorical syllogisms can be constructed, of which 27 constitute valid syllogisms.

Experimental work on human syllogistic reasoning has shown that humans do not adhere to
a purely logical deductive process when tasked with evaluating the validity of a syllogism or with
producing a conclusion based on the premises (Khemlani & Johnson-Laird, 2012). Humans seem
to be on the one hand sensitive to the defeasibility and probability of the premises (Evans et al.,
1983; Oakhill & Johnson-Laird, 1985; Stupple & Ball, 2008), but also to the ordering of the
properties (figural effects) (Copeland & Radvansky, 2004; Jia et al., 2009; Stupple & Ball, 2007).
Furthermore, human reasoners have difficulty identifying invalid syllogisms (Ragni et al., 2019;
Riesterer et al., 2019) and exhibit large individual differences (Khemlani & Johnson-Laird, 2016).
Here, we aim to arrive at a cognitive model for syllogistic reasoning that explains the pressures
that underlie human syllogistic reasoning in terms of a trade-off between world knowledge and
probabilistic language use.

In recent years, a number of models have been presented to explain human syllogistic

reasoning, which can be roughly categorized into heuristic-based, logic-based and mental-models-



based (Bischofberger & Ragni, 2020; Khemlani & Johnson-Laird, 2012). Critically, many of these
models are defined verbally, and therefore do not allow for direct evaluation of their predictions.
A notable exception is the recent model by Tessler et al. (2022), which is based on Rational
Speech Act (RSA) theory (M. C. Frank & Goodman, 2012) and models syllogistic reasoning
using probabilistic and pragmatic pressures on language comprehension and production. The
model is evaluated based on the dataset from Ragni et al. (2019) and is shown to capture
probabilistic effects on syllogistic reasoning by formalizing a reasoner’s prior beliefs over possible
situations. Here, we here aim to offer an explanation of human syllogistic reasoning at the
algorithmic /representational level (in the sense of Marr, 1982) by modeling syllogistic reasoning
in terms of incremental language comprehension. To this end, we employ the distributed
meaning representations from Distributional Formal Semantics (DFS) (Venhuizen et al., 2021),
a framework that models propositions as vectors of truth values over a set of formal model
structures (effectively implementing a possible-world semantics perspective on propositions).
The representations from DFS are inherently logical as well as probabilistic, which allows us
in principle to capture the deductive as well as probabilistic aspects of syllogistic reasoning.
Furthermore, DFS representations have been employed in recurrent neural networks and are
shown to capture incremental and information-theoretic aspects of language comprehension
(Venhuizen, Crocker et al., 2019a, 2019b; Venhuizen et al., 2021). In particular, Venhuizen,
Crocker et al. (2019a) have shown that such models allow for quantifying incremental effects (in
terms of Surprisal; cf. Levy, 2008) of independently manipulating world knowledge, modelled as
the probabilistic variations in the DF'S representations, and probabilistic language use, modelled
as the distributional properties of the training corpus.

We model syllogistic patterns as the degree to which a conclusion can be inferred from the
conjunction of the premises, where each statement is a DFS-vector. We can generate these
vectors by sampling a vector space (meaning space) from a set of basic propositions and a
set of constraints on model structures in DFS (see Venhuizen, Hendriks et al., 2019). The
basic propositions are defined in terms of the properties a, b, ¢, applied to a set of 6 entities,
resulting in a total of 18 propositions. Sampling then comes down to determining the truth
values of each basic proposition in a large set of model structures (N = 10000) in accordance
with the constraint set (an example constraint is that each entity in a model structure must
have at least one property). The resulting set of models captures the world knowledge defined
in the constraints as propositional co-occurrences across models: propositions that are true in
many of the same models have related meanings. Furthermore, logical entailment is defined
as subsumption across model structures: proposition p logically follows from proposition ¢
iff p is true in all model structures in the meaning space that satisfy ¢. We can exploit the
probabilistic nature of the meaning representations by using the inference score (see eq. (1) in
the supplementary materials) (S. L. Frank et al., 2009) to compute to what extent meaning
vectors are inferred from each other. Because DFS is compositional and all first order logic
operations are defined over vectors, we can construct complex meaning vectors representing each

of the three statements of a syllogism. Figure 1 shows the inference scores of all conclusions



given the conjunction of the premises for a subset of the syllogisms. This figure shows that
offline DFS representations capture full logical behavior, and moreover quantify uncertainty
over possible conclusions.

We compare the inference scores from the ‘offline’ DFS representations to an existing
dataset provided in the CCOBRA benchmarking package (Brand et al., 2019; see also Ragni
et al., 2019). Given the inherently logical nature of these representations, they do not directly
capture non-logical human reasoning behavior. Therefore, we exploit the probabilistic mapping
from linguistic input to meaning that is offered by incorporating DFS representations in an
RNN architecture. This allows us to manipulate the frequency with which premises occur in
combination with each conclusion, which may be driven by, e.g., figural effects or the prior
probability of the premises/conclusion. In addition, the incremental nature of such a model allows
us to investigate the word-by-word inferences that are made during syllogistic comprehension. In
sum, where previous work has illustrated the sensitivity of human syllogistic reasoning to broad
communicative pressures (Tessler et al., 2022), our neural model using DFS representations offers
a novel perspective on syllogistic reasoning in terms of incremental language comprehension:

Reasoners use probabilistic properties of language and the world to determine valid inferences.
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Figure 1: Inference scores between the premises of a subset of the 64 syllogisms and the 9
possible conclusions from a meaning space of 10000 models. Values of 1 (dark blue) and —1
(dark red) squares mean a positive and a negative entailment respectively. Real values in this
range (shades squares) indicate an (un)likely conclusion. Logically valid conclusions are marked
with a gray asterisk.
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