Monotonicity Reasoning as a Bridge Between
Linguistic Theory and NLI

This talk is (a) a report on ongoing work by a research community which takes
inspiration both from linguistic theory and from computational linguistics;
(b) a statement about the gaps between the two; and (c) a plea for further
interaction. It is largely a position paper.

The topic of interest is natural language inference (NLI), both on the
computer and by humans. Although natural language semantics sometimes
advertises itself as being a study of inference (“what follows from what?”),
the study of inference proper is a topic that is hardly ever broached by se-
manticists. That is, just giving the truth conditions for sentences is enough of
a task, and the semanticist in practice ignores inference. But the semanticist
is not alone in doing so. People in several other fields could reasonably be
expected to think about NLI, but they, too, do not take the matter seriously.
Logicians are unable to cope with sentences “in the wild.” Cognitive sci-
entists are interested in human performance, but they usually confine their
studies to syllogism-like snippets of two or three sentences. People in the
NLI area of NLP build systems that can indeed learn by pattern-matching,
but they rarely work on actual inference by humans.

Around 2018, the time that the BERT models burst on the scene, there
were several groups of people working on logic-based approaches to NLI. These
efforts did not use machine learning methods (at the time this did not seem
like a great idea), but rather used some version of theorem proving, based on
converting the assumption sentences and the conclusion sentences to some
sort of representation and then calling a theorem prover. As it happened,
the different logic-based approaches all performed about equally well on the
datasets that were most important at the time, including the SICK dataset.
But the BERT models out-performed all of them. So this is the backdrop of
this talk.

Arrow tagging The main topic of the paper is monotonicity reasoning.
This is an old topic in semantics, best-known perhaps from the work of
Ladusaw, Dowty, Keenan, Barwise & Cooper, and others. When one pushes
it further, a number of interesting issues and problems arise. In terms of
the Bridges and Gaps theme, we have parsers for grammatical frameworks
that have something approximating a clear mathematical semantics, and so

one could marry some a “algebraic” work on monotonicity with a parer that
runs on text as it comes, and thereby get a very “lightweight” approach to
inference. To be sure, the kind of grammar used in van Benthem’s work was
Ajdukiewicz/Bar-Hillel CG, probably the simplest kind of grammar, and one
has to work a bit to extend it to a framework like CCG. That is, one has to
“do the math”, and that is one of the topics in this line of work. Skipping
all of the details, we can now do “arrow tagging” on the computer. There are
programs which input parsed trees from a CCG parser (see Figure 1), and
change them a little, producing a parse tree with upward-looking arrows and
downward-looking arrows, and other information besides (Figure 2).

Using arrow tagging in NLI To actually use arrow tagging in NLI in the-
ory, one also needs a source of basic facts like dog < animal, and preferably an
inference engine that could take temporary assumptions like Sarah is a doc-
tor and add NP-level basic facts like every doctor < Sarah < some doctor.
Arrow-tagging gives us a very “lightweight” theory of inference: build a good
database of background facts, do the tagging, and make replacements. This
will not cover for hard-core logical entailment, but it ought to be sufficent
for everyday “unconscious” inference.

Connections to the “logicality of language area This talk will bring
up a new point: the field of semantics developed by Chierchia, del Pinal, and
others dealing with the “logicality of language” is also about monotonicity. So
there should be some connection to the work by computational semanticists.

But can a linguistically-informed inference engine really compete
with machine learning NLI? Yes, No, and Maybe. What we find is
that monotonicity is a good strong first tool, perhaps unexpectedly so. One
needs further theory to handle syntactic variation, and here, too, there are
real connections to topics in semantics that are often neglected. One also
can build hybrid systems that use both machine learning and arrow tagging.
At the present time, the best performing system on the SICK dataset is such
a system; it is called NeuralLog.

The overall theme of the talk is that the combination of machine learning
-+ monotonicity reasoning is a going concern bridging the gap and leading to
new problems and issues on both sides.

I :Np T
F :s/(s\NpP) ch : (s\np)/NP
that : (N\N)/(s/NP) Fido chased : s/NP 5
cat : N that Fido chased : N\N
every : NP/N cat that Fido chased : N
every cat that Fido chased : NP g ran : S\NP

>

<

every cat that Fido chased ran : s
Figure 1: A CCG parse

Flie cht:e—(e—1t)
<

thatt : (e — t) 5 (pr 5 pr) Fido chasedt : e — ¢

>
catt : pr that Fido chased* : pr & pr -
- +
every! : pr = npt cat that Fido chasedt : pr ranl e 5t K
>
every cat that Fido chased? : npt ran® : npt 5 ¢

<
every cat that Fido chased ranT : ¢

Figure 2: Arrow tagging in our CCG parse

system P R acc.
majority baseline - - 56.36
ML/DL-based systems
BERT (base, uncased) 86.81 85.37 86.74
Yin and Schiitze (2017) - - 871
Beltagy et al. (2016) - - 851
Logic-based systems
Bjerva et al. (2014) 93.6 60.6 81.6
Abzianidze (2017) 97.95 5811 81.35
Martinez-Gémez et al. (2016) | 97.04 63.64 83.13
Yanaka et al. (2018) 84.2 773 843

MonaLog + transformations | 89.91 74.23 81.66f
Hybrid systems
Hybrid: MonaLog + BERT 85.65 87.33 85.95

Kalouli et al. (2020) 86.5
NeuralLog (full system) 88.0 87.6 90.3
— syntactic variation 68.9 79.3 71.4
— monotonicity 74.5 75.1 4.7

