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These expectations from 
diverse contextual cues 
affect human language 
processing extremely 
quickly
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Surprisal as an index of real-time processing load

4(Hale, 2001, NAACL; Levy, 2008, Cognition)

N400 size

(Federmeier & 
Kutas, 1999)

• Let a word’s difficulty be its surprisal given its context:

• Captures the expectation intuition: the more we expect an 
event, the easier it is to process
• Brains are prediction engines!

• Predictable words are:
• read faster (Ehrlich & Rayner, 1981)
• have distinctive EEG responses (Kutas & Hillyard 1980)

• with a language model that captures syntactic structure, 
we can get GRAMMATICAL EXPECTATIONS



Quantifying structure and surprise
• Hypothesis: a word’s difficulty is its surprisal in context:

5

0

2

4

6

8

0.00 0.25 0.50 0.75 1.00
Probability

Su
rp

ris
al

 (b
its

)

(Shannon, 1948: a basic quantity from information theory!)



Estimating probability/time curve shape

6



Estimating probability/time curve shape
• As a proxy for “processing difficulty,” reading time in two 

different methods: self-paced reading & eye-tracking

6



Estimating probability/time curve shape
• As a proxy for “processing difficulty,” reading time in two 

different methods: self-paced reading & eye-tracking
• Challenge: we need big data to estimate curve shape, but 

probability correlated with confounding variables

6



Estimating probability/time curve shape
• As a proxy for “processing difficulty,” reading time in two 

different methods: self-paced reading & eye-tracking
• Challenge: we need big data to estimate curve shape, but 

probability correlated with confounding variables

6

(5K words) (50K words)



Estimating probability/time curve shape
• Generalized 

additive model 
regression: total 
contribution of 
word (trigram) 
probability to RT 
near-linear over 
6 orders of 
magnitude!

7

(Smith & Levy, 2013)
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•On average, time linear in the word’s log-probability 
•Methodologically: reading puts control in the 

comprehender’s hands (and eyes!), allowing us to study 
processing difficulty through reading time

Take-away: how long to process a word in context?
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Language models tested
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Model Architecture Training Data Data size (tokens) Reference
JRNN LSTM Web text ~800,000,000 Jozefowicz et al. (2016)

GRNN LSTM Wikipedia ~90,000,000 Gulordava et al. (2018)

GPT-2 Transformer Web text ~8,000,000,000 Radford et al. (2019)

GPT-3 Transformer Web text ~40,000,000,000 Brown et al. (2020)

RNNG Syntax+LSTM Penn Treebank ~1,000,000 Dyer et al. (2016)

tinylstm LSTM Penn Treebank ~1,000,000

n-gram 5-gram model British Nat'l Corpus ~100,000,000
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No-matrix penalty
Matrix licensing

(Futrell, Wilcox, Morita, Qian, Ballesteros, & Levy, NAACL 2019)



Subordination: results

24(Futrell, Wilcox, Morita, Qian, Ballesteros, & Levy, NAACL 2019)



I know what the lion devoured ___ at sunrise.✓

25(Wilcox et al., 2018; in prep)
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I know what the lion devoured ___ at sunrise.✓

* I know that the lion devoured ___ at sunrise.
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Filler–gap dependencies are a signature, theoretically 
central feature of natural language grammar

(Wilcox et al., 2018; in prep)



29

I know that ... the CEO showed the slides to the guests after lunch.✓
I know what ... the CEO showed the slides to the guests after lunch.*

NO GAP

M
ea

n 
by

-w
or

d 
su

rp
ris

al

(Matches well-known human reading-
time patterns: Stowe, 1986)



29

I know that ... the CEO showed the slides to the guests after lunch.✓
I know what ... the CEO showed the slides to the guests after lunch.

✓

I know that ... the CEO showed __________ to the guests after lunch.

I know what ... the CEO showed __________ to the guests after lunch.

*
*

NO GAP GAP

M
ea

n 
by

-w
or

d 
su

rp
ris

al

(Matches well-known human reading-
time patterns: Stowe, 1986)



29

I know that ... the CEO showed the slides to the guests after lunch.✓
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I know that ... the CEO showed __________ to the guests after lunch.

I know what ... the CEO showed __________ to the guests after lunch.
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(Matches well-known human reading-
time patterns: Stowe, 1986)



Flexibility of filler–gap dependencies

30(Wilcox et al., 2018, in prep)



Unboundedness of wh-dependencies

31

I know what our mother gave __ to Mary last weekend.



Unboundedness of wh-dependencies

31

I know what our mother said that your friend gave __ to Mary 
last weekend.

I know what our mother gave __ to Mary last weekend.
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Unboundedness of wh-dependencies

31
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your friend gave __ to Mary last weekend.
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Unboundedness of wh-dependencies
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I know what our mother said that her friend remarked that the 
park attendant wondered that your friend gave __ to Mary last 
weekend.
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your friend gave __ to Mary last weekend.
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Unboundedness of wh-dependencies
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I know what our mother said that her friend remarked that the 
park attendant wondered that the people stated that your friend 
gave __ to Mary last weekend.

I know what our mother said that her friend remarked that the 
park attendant wondered that your friend gave __ to Mary last 
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I know what our mother said that her friend remarked that 
your friend gave __ to Mary last weekend.

I know what our mother said that your friend gave __ to Mary 
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Unboundedness of filler–gap dependency
• For object gaps:

32(Wilcox et al., in prep)
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Unboundedness of filler–gap dependency
• For object gaps:

32(Wilcox et al., in prep)

Transformer models LSTM models



Potential concern #1

33

Couldn’t the models be learning a linear dependency between filler 
and gap, not a hierarchical dependency?



Syntactic Hierarchy
• A filler must be appropriately “above” its gap

34(Wilcox et al., 2019; in prep)
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Predictions for human-like processing

36

... the criminal shot the teller with a gun shocked the jury last year .

The fact that the mayor knows that/who ...

NO GAPS

... the criminal shot    ____    with a gun shocked the jury last year.

GAP IN SUBJECT

... the criminal shot the teller with a gun shocked   ____   last year.

GAP IN MATRIX CLAUSE

Clause Boundary
Subject 

(Below filler)
Matrix 

(Above filler)

(Wilcox et al., 2019; in prep)



Predictions for human-like processing

36

... the criminal shot the teller with a gun shocked the jury last year .

The fact that the mayor knows that/who ...

W
h-

ef
fe

ct
 (b

its
)

NO GAPS

... the criminal shot    ____    with a gun shocked the jury last year.W
h-

ef
fe

ct
 (b

its
)

GAP IN SUBJECT

... the criminal shot the teller with a gun shocked   ____   last year.W
h-

ef
fe

ct
 (b

its
)

GAP IN MATRIX CLAUSE

0

0

0

Clause Boundary
Subject 

(Below filler)
Matrix 

(Above filler)

(Wilcox et al., 2019; in prep)



Predictions for human-like processing

36

... the criminal shot the teller with a gun shocked the jury last year .

The fact that the mayor knows that/who ...

W
h-

ef
fe

ct
 (b

its
)

NO GAPS

... the criminal shot    ____    with a gun shocked the jury last year.W
h-

ef
fe

ct
 (b

its
)

GAP IN SUBJECT

... the criminal shot the teller with a gun shocked   ____   last year.W
h-

ef
fe

ct
 (b

its
)

GAP IN MATRIX CLAUSE

0

0

0

Clause Boundary
Subject 

(Below filler)
Matrix 

(Above filler)

(Wilcox et al., 2019; in prep)



Predictions for human-like processing

36

... the criminal shot the teller with a gun shocked the jury last year .

The fact that the mayor knows that/who ...

W
h-

ef
fe

ct
 (b

its
)

NO GAPS

... the criminal shot    ____    with a gun shocked the jury last year.W
h-

ef
fe

ct
 (b

its
)

GAP IN SUBJECT

... the criminal shot the teller with a gun shocked   ____   last year.W
h-

ef
fe

ct
 (b

its
)

GAP IN MATRIX CLAUSE

0

0

0

Clause Boundary
Subject 

(Below filler)
Matrix 

(Above filler)

(Wilcox et al., 2019; in prep)



Predictions for human-like processing

36

... the criminal shot the teller with a gun shocked the jury last year .

The fact that the mayor knows that/who ...

W
h-

ef
fe

ct
 (b

its
)

NO GAPS

... the criminal shot    ____    with a gun shocked the jury last year.W
h-

ef
fe

ct
 (b

its
)

GAP IN SUBJECT

... the criminal shot the teller with a gun shocked   ____   last year.W
h-

ef
fe

ct
 (b

its
)

GAP IN MATRIX CLAUSE

0

0

0

Clause Boundary
Subject 

(Below filler)
Matrix 

(Above filler)

(Wilcox et al., 2019; in prep)



Predictions for human-like processing

36

... the criminal shot the teller with a gun shocked the jury last year .

The fact that the mayor knows that/who ...

W
h-

ef
fe

ct
 (b

its
)

NO GAPS

... the criminal shot    ____    with a gun shocked the jury last year.W
h-

ef
fe

ct
 (b

its
)

GAP IN SUBJECT

... the criminal shot the teller with a gun shocked   ____   last year.W
h-

ef
fe

ct
 (b

its
)

GAP IN MATRIX CLAUSE

0

0

0

Clause Boundary
Subject 

(Below filler)
Matrix 

(Above filler)

(Wilcox et al., 2019; in prep)



Sensitivity to syntactic hierarchy
• For object gaps:

37(Wilcox et al., in prep)



Potential concern #1

38

Couldn’t the models be learning a linear dependency between filler 
and gap, not a hierarchical dependency?



Potential concern #1 — addressed

39

Couldn’t the models be learning a linear dependency between filler 
and gap, not a hierarchical dependency?X

Our results suggest that deep-learning models trained on enough 
data are sensitive to syntactic hierarchy for wh-dependency



Syntactic island constraints

40

(Phillips, 2013; see also Pearl & Sprouse, 2013)

(Wilcox et al., 2018; in prep)



• Some types of phrases are islands: filler–gap dependencies 
cannot link from outside to inside of them

Syntactic island constraints

40

(Phillips, 2013; see also Pearl & Sprouse, 2013)

(Wilcox et al., 2018; in prep)



• Some types of phrases are islands: filler–gap dependencies 
cannot link from outside to inside of them

• "Island effects have long been regarded as strong motivation for 
domain-specific innate constraints on human language...likely to 
be difficult to observe in the input that children must learn from."

Syntactic island constraints

40

(Phillips, 2013; see also Pearl & Sprouse, 2013)

(Wilcox et al., 2018; in prep)



Wh-complementizers block filler—gap dependencies:

✓         …your friend devoured __ at the party.  
                           [no complementizer]

(✓)    …that your friend devoured __ at the party. 
                        [that complementizer]

* …whether your friend devoured __ at the party. 
                          [wh-complementizer]  

Syntactic islands

41

I know what Alex said…

(Wilcox et al., 2018; in prep)
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I know that my brother said our aunt devoured the cake at the party.

I know what my brother said our aunt devoured the cake at the party.

I know that my brother said our aunt devoured ________ at the party.

I know what my brother said our aunt devoured ________ at the party.
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I know that my brother said that our aunt devoured the cake at the party.
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I know that my brother said whether our aunt devoured the cake at the party.

I know what my brother said whether our aunt devoured the cake at the party.

I know that my brother said whether our aunt devoured ________ at the party.

I know what my brother said whether our aunt devoured ________ at the party.*
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Results for WH-islands

45(Wilcox et al., in prep)



Potential concern #2

46

Could deep-learning models have difficulty threading any type of 
expectation into a syntactic island?



Gendered-pronoun Expectation Control

47(Wilcox et al., 2019; in prep)



Gendered-pronoun Expectation Control
• Worry: Can the models thread any expectation into islands?
• Test with expectation for gendered pronouns set up by culturally 

or morphologically gendered subjects.
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✓ The actress said that they insulted her friends. 
[CONTROL, MATCH]
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Gendered-pronoun Expectation Control
• Worry: Can the models thread any expectation into islands?
• Test with expectation for gendered pronouns set up by culturally 

or morphologically gendered subjects.
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✓ The actress said that they insulted her friends. 
[CONTROL, MATCH]

# The actress said that they insulted his friends.  
[CONTROL, MISMATCH]
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Gendered-pronoun Expectation Control
• Worry: Can the models thread any expectation into islands?
• Test with expectation for gendered pronouns set up by culturally 

or morphologically gendered subjects.

47

Gender Expectation 
Effect (#-✓ should be 
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✓ The actress said that they insulted her friends. 
[CONTROL, MATCH]

# The actress said that they insulted his friends.  
[CONTROL, MISMATCH]
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Gendered-pronoun Expectation Control
• Worry: Can the models thread any expectation into islands?
• Test with expectation for gendered pronouns set up by culturally 

or morphologically gendered subjects.

47

Gender Expectation 
Effect (#-✓ should be 

positive)

✓ The actress said that they insulted her friends. 
[CONTROL, MATCH]

# The actress said that they insulted his friends.  
[CONTROL, MISMATCH]

✓ The actress said whether they insulted her friends. 
[ISLAND, MATCH]
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Gendered-pronoun Expectation Control
• Worry: Can the models thread any expectation into islands?
• Test with expectation for gendered pronouns set up by culturally 

or morphologically gendered subjects.
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Effect (#-✓ should be 
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✓ The actress said that they insulted her friends. 
[CONTROL, MATCH]
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Gendered-pronoun Expectation Control
• Worry: Can the models thread any expectation into islands?
• Test with expectation for gendered pronouns set up by culturally 

or morphologically gendered subjects.

47

Gender Expectation 
Effect (#-✓ should be 

positive)

✓ The actress said that they insulted her friends. 
[CONTROL, MATCH]

# The actress said that they insulted his friends.  
[CONTROL, MISMATCH]

✓ The actress said whether they insulted her friends. 
[ISLAND, MATCH]

# The actress said whether they insulted his friends.  
[ISLAND, MISMATCH]
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Gendered-pronoun Expectation Control
• Worry: Can the models thread any expectation into islands?
• Test with expectation for gendered pronouns set up by culturally 

or morphologically gendered subjects.

47
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Effect (#-✓ should be 
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✓ The actress said that they insulted her friends. 
[CONTROL, MATCH]

# The actress said that they insulted his friends.  
[CONTROL, MISMATCH]

✓ The actress said whether they insulted her friends. 
[ISLAND, MATCH]

# The actress said whether they insulted his friends.  
[ISLAND, MISMATCH]
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Gendered-pronoun Expectation Control
• Worry: Can the models thread any expectation into islands?
• Test with expectation for gendered pronouns set up by culturally 

or morphologically gendered subjects.

47
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[ISLAND, MISMATCH]

S

VP

SBAR

S

VP

NP

her friends

insulted

NP

they

whether

said

NP

the actress ?

(Wilcox et al., 2019; in prep)



???

Gendered-pronoun Expectation Control
• Worry: Can the models thread any expectation into islands?
• Test with expectation for gendered pronouns set up by culturally 

or morphologically gendered subjects.

47

Gender Expectation 
Effect (#-✓ should be 

positive)

If models can thread gender expectation into islands, 
the gender expectation effect should look the same 

in islands as in the control conditions.

✓ The actress said that they insulted her friends. 
[CONTROL, MATCH]

# The actress said that they insulted his friends.  
[CONTROL, MISMATCH]

✓ The actress said whether they insulted her friends. 
[ISLAND, MATCH]

# The actress said whether they insulted his friends.  
[ISLAND, MISMATCH]
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48

The actress said that they insulted her friends.

The actress said that they insulted his friends.
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The actress said that they insulted his friends.
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The actress said that they insulted his friends.

The actress said whether they insulted her friends.

The actress said whether they insulted his friends.
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The actress said that they insulted his friends.

The actress said whether they insulted her friends.

The actress said whether they insulted his friends.

0

10

20

30

The
 ac

tre
ss sa

id

whe
the

r

the
y in

su
lte

d
his

/he
r

frie
nd

s

. <
eo

s>

Su
rp

ris
al

 o
f r

eg
io

n

match

mismatch

0

10

20

30

The
 ac

tre
ss sa

id tha
t

the
y in

su
lte

d
his

/he
r

frie
nd

s

. <
eo

s>

Su
rp

ris
al

 o
f r

eg
io

n

match

mismatch



Filler–gap vs. gender expectations in WH-islands

49(Wilcox et al., in prep)



Potential concern #2

50

Could deep-learning models have difficulty threading any type of 
expectation into a syntactic island?



Potential concern #2 — addressed

51

Could deep-learning models have difficulty threading any type of 
expectation into a syntactic island?X

Deep-learning models that learn island constraints still propagate 
pronoun gender expectations into islands



Psycholinguistic tests of AI language models 

52

http://syntaxgym.org

(Gauthier et al., 2020)



Quantitative calibration to human processing
• The surprisal–RT relationship in naturalistic reading:

53(Wilcox et al., 2020)



Low-tech, crowd-sourceable reading
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Low-tech, crowd-sourceable reading
• The maze task 
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• Choose the string that fits given the preceding context
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Low-tech, crowd-sourceable reading
• The maze task 
• Choose the string that fits given the preceding context
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Low-tech, crowd-sourceable reading
• The maze task 
• Choose the string that fits given the preceding context
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Low-tech, crowd-sourceable reading
• The maze task 
• Choose the string that fits given the preceding context

54

F J

the eat

(Forster et al., 2009; Boyce et al., 2020)



Low-tech, crowd-sourceable reading
• The maze task 
• Choose the string that fits given the preceding context

54

F J

the eat

(Forster et al., 2009; Boyce et al., 2020)
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(Wilcox et al., 2021; see also van 
Schijndel &  Linzen, 2020) 55
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Pooling many controlled 
experiments, regress human 
RTs against model surprisal 
and examine residual
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Summary: what I have argued today
• Standard deep-learning models learn remarkably subtle 

features of human grammar from a childhood's worth 
of linguistic input (no real-world grounding needed!) 

• However, these models' predictions are not 
quantitatively aligned with human comprehension 
behavior when expectations about grammatical 
structure are violated 

• Deep-learning models offer insights into learnability 
and a powerful scientific tool for expectation 
estimation, but not a theoretical account of human 
language representation and processing
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• Noisy-channel mechanisms for error detection & robustness (Levy 2008, 
Gibson et al., 2013, Futrell et al., 2020) 

• Limitations on fidelity of memory representations & access (Lewis et al., 2006) 

• Incremental semantic representations evaluable in context (Jacobson 1999, 
Aparicio et al. in prep)

Other ingredients for theory of human language comprehension
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Information
Source

Intended
message

Utterance

Transmitter Receiver

Input &
Memory

Destination

Inferred
message

Noise
Source

Production Signal Received
Signal

Comprehension

Prior: P (m)
Speaker likelihood:

P (u|m)
Input likelihood:

P (I|u)
Posterior:

P (m|I) / P (I|m)P (m)

P (u|I) / P (I|u)P (u)

Mary loves and John hates...
λx[LOVE(x)(mary) ∧HATE(x)(john)]

Click on the rabbit in the big...
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Thank you for listening!

http://www.mit.edu/~rplevy

http://cpl.mit.edu

http://syntaxgym.org

http://cpl.mit.edu
http://syntaxgym.org
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