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Compositional Linguistic Generalization

• Producing/comprehending linguistic expressions that have not been encountered before 
(“generalization”)

• …by composing known constituents

KNOWN:  
{The suspect kicked the victim → kick(s, v)
The suspect kicked the man    → kick(s, m)
The thief kicked the victim   → kick(t, v)
The man kicked the crog → kick(m, c)

}

The crog kicked the victim →  kick(c, v)

→  kick(m, c)

→  kick(s, v)

Compositional

Any sentence with ‘crog’ has this meaning

Take the most frequently observed kicker

kicker kicked
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Compositional Linguistic Generalization

• Producing/comprehending linguistic expressions that have not been encountered before 
(“generalization”)

• …by composing known constituents

KNOWN:  
{The suspect kicked the victim → kick(s, v)
The suspect kicked the man    → kick(s, m)
The thief kicked the victim   → kick(t, v)
The man kicked the crog → kick(m, c)

}

The crog kicked the victim →  kick(c, v) Compositional according to Theory 1

kicker kicked
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Theory 1: 𝑵𝑷𝟏 𝑽𝒕𝒓 𝑵𝑷𝟐 → 𝑑(𝑽𝒕𝒓)(𝑑(𝑵𝑷𝟏), 𝑑(𝑵𝑷𝟐))



Compositional Linguistic Generalization

• Producing/comprehending linguistic expressions that have not been encountered before 
(“generalization”)

• …by composing known constituents

KNOWN:  
{The suspect kicked the victim → kick(s, v)
The suspect kicked the man    → kick(s, m)
The thief kicked the victim   → kick(s, t)
The victim kicked the bucket  → die(v)

}

The suspect kicked the bucket →  kick(s, b)

Theory 1: 𝑵𝑷𝟏 𝑽𝒕𝒓 𝑵𝑷𝟐 → 𝑑(𝑽𝒕𝒓)(𝑑(𝑵𝑷𝟏), 𝑑(𝑵𝑷𝟐))
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Compositional generalization can only 

derive the literal meaning under 

Theory 1



Compositional Linguistic Generalization

• Producing/comprehending linguistic expressions that have not been encountered before 
(“generalization”)

• …by composing known constituents

KNOWN:  
{The suspect kicked the victim → kick(s, v)
The suspect kicked the man    → kick(s, m)
The thief kicked the victim   → kick(s, t)
The victim kicked the bucket  → die(v)

}

Theory 2: 𝑵𝑷𝟏 𝑽𝒕𝒓 𝑵𝑷𝟐 → 𝑑(𝑽𝒕𝒓)(𝑑(𝑵𝑷𝟏), 𝑑(𝑵𝑷𝟐))

but if 𝑉𝑡𝑟 = kicked and 𝑁𝑃2 = the bucket → die(d 𝐍𝐏𝟏 )

6
→  kick(s, b)The suspect kicked the bucket

The suspect kicked the bucket →  die(s) Compositional generalization includes 

idiomatic meaning under Theory 2



Compositional Linguistic Generalization

• How composition works is theory dependent! (predicts different generalizations)

• Thus, “compositional linguistic generalization” for a given expression crucially depends on the 
particular compositional theory of language assumed

• Producing/comprehending linguistic expressions that have not been encountered before 
(“generalization”)

• …by composing known constituents
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Inductive Bias (Learning Bias)

• Determines how a learner generalizes to unseen inputs

The crog kicked the victim →  kick(c, v)

→  kick(m, c)

→  kick(s, v)

Compositional

Any sentence with ‘crog’ has this meaning

Take the most frequently observed agent

Which one should I choose?

Same 

inductive bias

Different

inductive biases

“Poverty of the stimulus” 
experimental paradigm 
(Wilson 2006) teases apart 
learners’ inductive biases
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Artificial Neural Networks (ANNs): The Success Story

• Approaching “human performance (?)” in many tasks that require language understanding

9
Wang et al. (2019)



Artificial Neural Networks (ANNs): The Success Story

• Approaching “human performance (?)” in many linguistic evaluation tasks
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What did John fry?
*What did John fry the potato? (Warstadt et al. 2019)

The farmer that the parents love swims
*The farmer that the parents love swim (Marvin and Linzen 2018)

• Growing interest in analyzing the linguistic capacity of ANNs!



Compositional Linguistic Generalization in ANN Learners

• The consensus seems to be that (vanilla, general-purpose) ANN learners do not demonstrate 
robust compositional generalization that humans are capable of

• But existing tests for compositional generalization are limited (in terms of measuring 
linguistic generalization):

• e.g., SCAN (Lake and Baroni 2018)

• Given {run -> RUN, jump -> JUMP, jump twice -> JUMP JUMP}, what is run twice?
• Great task, but limited expressivity (no way to express predicate-argument structure)

• One contribution: proposing a task that measures compositional linguistic generalization (that 
humans are able to make)

• Why do we care?
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This Work

• This work: comparing the inductive biases of ANN and human learners on assigning meaning 
representations to novel complex expressions

• Outcome 1: Their inductive biases align

• Useful as a demonstration of how compositional capacity can be implemented in a 
distributed system

• Useful as a model that has the same inductive bias as humans that we can study with 
more freedom in possible experimental manipulations

• Implications for Artificial Intelligence
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This Work

• This work: comparing the inductive biases of ANN and human learners on assigning meaning 
representations to novel complex expressions

• Outcome 2: Their inductive biases do not align

• New question: what factors contribute to changing the inductive bias of the models to 
more closely match that of humans?

• The answer(s) to this new question may inform us about the ways in which compositional 
generalization arises in an intelligent system

• + AI implications
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This Work

• This work: comparing the inductive biases of ANN and human learners on assigning meaning 
representations to novel complex expressions

• Primarily a study of machine cognition

• …using the findings/tools from (human) cognitive science

• …that will help understand better and improve AI

• …that may inspire future human subject studies (“animal models” analogy from McCloskey 1991)
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A Test for Compositional Linguistic Generalization

• Meaning representation assignment (translation): assigning a logical form to a sequence of words

• Test format: sequence mapping (sentences to logical forms)

INPUT:  A cat danced.

OUTPUT:  cat(𝑥1) 𝐴𝑁𝐷 dance.agent(𝑥2, 𝑥1)

The compositional 

theory adopted is made 

explicit by defining 

syntax, semantics, and 

the mapping rule
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S -> NP VP

NP -> Det N

…

d(NP VP) = d(NP) AND 

d(V).agent(𝑥𝑗 , 𝑥𝑖)

d(a cat) = cat(𝑥𝑖)
…..



A Test for Compositional Linguistic Generalization

• The training set contains various systematic gaps: certain patterns are withheld during training

• The “out-of-distribution” generalization set contains the withheld examples that can be 
correctly mapped onto their meaning representations by composing parts available in the 
training data

• For example…

TRAINING:  {A hedgehog ate the cake, 
Alex danced,
The butterfly saw a flower}

GENERALIZATION: Alex saw a hedgehog

“a hedgehog” never 

seen as 

grammatical object 

during training

17

Examples like “A hedgehog ate the cake” → “Exposure examples” (examples with restricted distribution of primitives)



A Test for Compositional Linguistic Generalization

• The training set contains various systematic gaps: certain patterns are withheld during training

• There is also an “in-distribution” generalization set that consists of novel sentences that don’t
pertain to the withheld patterns

• For example…

TRAINING:  {A hedgehog ate the cake, 
Alex danced,
The butterfly saw a flower}

GENERALIZATION: Alex saw the cake

“Alex”, “saw”, “the 

cake” all seen in the 

same syntactic 

position during 

training, although 

the combination is 

novel
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A Test for Compositional Linguistic Generalization

• 21 different generalization cases—ask me about them later!

• Generalization cases are inspired by generalizations human learners can make, 
according to the theoretical and developmental linguistics literature

• e.g., Children as young as 20 months old display subject -> object generalization 
(Tomasello and Olguin 1993)

• 24K training examples, 3K “in-distribution” generalization examples, 
21K “out-of-distribution” generalization examples
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Types of Generalization

• Can be broadly divided into two categories: lexical and structural

• Lexical generalization: assigning meaning representations to novel combinations of familiar 
primitives and familiar syntactic configurations

TRAINING:  {A hedgehog ate the cake, 
Alex danced,
The butterfly saw a flower}

GENERALIZATION: Alex saw a hedgehog

• “hedgehog” is familiar, transitive VPs with NP subject/objects are familiar
• But “hedgehog” in the object NP position is novel

20

1 exposure 

example / lexical 

generalization 

case



Types of Generalization

• Can be broadly divided into two categories: lexical and structural

• Structural generalization: assigning meaning representations to known primitives in novel 
syntactic configurations

TRAINING:  {Luke danced,
The cat danced,
Noah knew that the cat danced,
Emma said that Noah knew that the cat danced}

GENERALIZATION: Luke said that Noah knew that Emma saw that the cat danced.

• Generalization example is structurally novel because a depth 3 embedded CP is not in the training set
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Types of Generalization

• Can be broadly divided into two categories: lexical and structural

• Structural generalization: assigning meaning representations to known primitives in novel 
syntactic configurations

TRAINING:  {The cat saw the rat on the mat,
The girl liked the cat on the table}

GENERALIZATION: The cat on the table saw the rat

• Generalization example is structurally novel because PP modification in the subject position 
is not in the training set
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Models & Training

• Models: Long Short-Term Memory (LSTM; Hochreiter and Schmidhuber 1997), 

bidirectional LSTM,

Transformer (Vaswani et al. 2017)
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Models & Training

• Models: LSTM (Hochreiter and Schmidhuber 1997), bidirectional LSTM,

Transformer (Vaswani et al. 2017)

• Comparable # of trainable parameters in each model:

Transformer (9.5M), biLSTM (10M), LSTM (11M)

• Trained from scratch on the training set only

• Each model trained five times with different random seeds 

(determines initial weights / order of training examples)

• Metric: exact string match accuracy

24



Results

• Overall low out-of-distribution generalization accuracy, despite high in-distribution accuracy

• High variation over random seeds

25

Out-of-distribution generalization In-distribution generalization



Error Analysis: Single Lexical Retrieval Errors

• Prominent pattern: “Single lexical retrieval errors”
• Correct output structure, but misretrieved a denotation for a single lexical item in the input

INPUT:   A frog burned Sophia.

TARGET:  frog(𝑥1) 𝐴𝑁𝐷 burn.agent(𝑥2, 𝑥1) 𝐴𝑁𝐷 burn.theme(𝑥2, Sophia)
ERROR:   director(𝑥1) 𝐴𝑁𝐷 burn.agent(𝑥2, 𝑥1) 𝐴𝑁𝐷 burn.theme(𝑥2, Sophia)

• Single lexical retrieval errors account for 17% / 43% / 56% of total Transformer / LSTM / BiLSTM
predictions

26



(Almost) Complete Failure on Structural Generalization

• All models were unsuccessful in translating novel structures

• Unidirectional LSTMs achieved very marginal success (1% structural generalization accuracy)

• LSTMs also produced errors closer to target outputs (token edit distance to target outputs: 11 and 
14 for bidirectional / unidirectional LSTM, respectively, and 42 for Transformer)
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Intermediate Takeaway

• The learning biases of the models tested (note, not a general claim about the architecture) 
are different from human learners—they show different generalization patterns

• Translating novel structures is especially challenging

• For lexical generalization, the erroneous outputs are often “single lexical retrieval errors”

What can we do?

28



AGENDA

1. Background

2. A test for compositional linguistic generalization

3. Learning biases for compositional linguistic generalization

4. Conclusion & Future work

29



What Can We Do to Modify the Learning Biases of the Models?

• Transfer learning from auxiliary tasks is a promising approach (Caruana 1997, Zhang et al. 2014, 
Meyerson and Miikkulainen 2018, Peters et al. 2018, Devlin et al. 2019, A LOT of current NLP!)

30

INPUT:  A cat danced.

OUTPUT:  cat(𝑥1) 𝐴𝑁𝐷 dance.agent(𝑥2, 𝑥1)



What Can We Do to Modify the Learning Biases of the Models?

• Transfer learning from auxiliary tasks is a promising approach (Caruana 1997, Zhang et al. 2014, 
Meyerson and Miikkulainen 2018, Peters et al. 2018, Devlin et al. 2019, A LOT of current NLP!)

INPUT:  A cat danced.

OUTPUT:  cat(𝑥1) 𝐴𝑁𝐷 dance.agent(𝑥2, 𝑥1)

Some input

Some output

31

Modifies the bias for target task



Experiment 1: Transfer Learning from Auxiliary Tasks 

• Compared three different auxiliary tasks
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• CCG supertagging (Bangalore and Joshi 1998): tagging task that is informative of 
combinatorial, phrase-structural constraints

• The tags are informative of how adjacent constituents combine with each other

• The constituency structure of a given well-formed expression can be deduced from 
the tags

Auxiliary Task 1: CCG Supertagging
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Auxiliary Task 1: CCG Supertagging

INPUT:   The  dog    bit     John
TARGET: NP/N   N (S\NP)/NP   NP

• Hypothesis: the structural information from the tagging task will help structural 
generalization

• CCG supertagging as an auxiliary task is helpful for tasks requiring sensitivity to 
linguistic structure, such as end-of-sentence detection 
(Kim et al. 2019)
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Auxiliary Task 2: Glossing (Word-by-word Translation)

• We saw in Part 1 that all models frequently produced single lexical retrieval errors
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Single Lexical Retrieval Errors as Violations of Faithfulness Constraints

INPUT:   A frog burned Sophia.

TARGET:  frog(𝑥1) 𝐴𝑁𝐷 burn.agent(𝑥2, 𝑥1) 𝐴𝑁𝐷 burn.theme(𝑥2, Sophia)
ERROR:   director(𝑥1) 𝐴𝑁𝐷 burn.agent(𝑥2, 𝑥1) 𝐴𝑁𝐷 burn.theme(𝑥2, Sophia)

• Outputs with single lexical retrieval errors violate two faithfulness constraints (in the terminology of 
Optimality Theory; Prince & Smolensky 1993/2002)
• MAX (“No deletion”):   Input frog should have a corresponding element in the output 
• DEP (“No insertion”):   Output director should have a corresponding element in the input

• …most likely in favor of satisfying a conflicting constraint like “be probable!”
• e.g., Subsequence director(𝑥1) more probable than frog(𝑥1) given the training data 
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Single Lexical Retrieval Errors as Violations of Faithfulness Constraints

• The Optimality Theoretic constraints mentioned here serve as descriptions of the output rather than a 
statement about how the models operate
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INPUT:   A frog burned Sophia.

TARGET:  frog(𝑥1) 𝐴𝑁𝐷 burn.agent(𝑥2, 𝑥1) 𝐴𝑁𝐷 burn.theme(𝑥2, Sophia)
ERROR:   director(𝑥1) 𝐴𝑁𝐷 burn.agent(𝑥2, 𝑥1) 𝐴𝑁𝐷 burn.theme(𝑥2, Sophia)



Auxiliary Task 2: Glossing (Word-by-word Translation)

• All models lacked bias for faithful outputs—outputs often contained single lexical retrieval 
errors that violate several faithfulness constraints

• Glossing task is a task that requires maximally faithful input-output mappings

INPUT:   The cat danced
TARGET: The′ cat′ danced′

• MAX (no deletion) and DEP (no insertion), the constraints often violated by model outputs in 
Part 1, are fully satisfied

• Hypothesis: this task will help improve single lexical retrieval errors by promoting output 
faithfulness
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Auxiliary Task 3: Word Prediction in Context (“Language Modeling”)

• Elman (1991): Task of predicting the next word can help models discover linguistic regularities

• Has been shown to be almost universally helpful across various language tasks (identifying entailment, 
question-answering, discourse relation identification…)

• Has been shown to be effective for capturing complex syntactic phenomena like long distance 
dependencies (Gulordava et al. 2018, Goldberg 2019)

• Has been claimed to be effective for compositional generalization (Furrer et al. 2020, Tay et al. 2021)

P(The cat sat on the mat) ? 
~ P(mat|The cat sat on the) ?

INPUT:  The cat <x> on the <y>
TARGET: <x> sat <y> mat

Language Modeling

Denoising variant of 
“word prediction in 

context”
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Auxiliary Task 3: Word Prediction in Context (“Language Modeling”)

• Main benefit might be an improvement in the models’ ability to detect substitutability of words 
or phrases

• No particular hypothesis on what kinds of errors this task will improve—mostly empirically 
motivated

INPUT:  The cat sat on the ___
TARGET: mat

INPUT:  The cat <x> on the <y>
TARGET: <x> sat <y> mat

Language Modeling

40

Denoising variant of 
“word prediction in 

context”



Multiple Auxiliary Tasks: Glossing + CCG Supertagging

• Hypotheses on what glossing and CCG supertagging will be helpful for are complementary

• Glossing: Unfaithful single lexical errors
• CCG Supertagging: Structural generalization errors

• Maybe using both as auxiliary tasks would have a compound benefit
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Comparison of Auxiliary Task Formats

Denoising 

Used the same 

text data (WSJ 

corpus) to 

generate these 

datasets
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Model & Training

• Same set of models tested before (Transformer, LSTM, BiLSTM)

• Added an auxiliary task training step before training on the dataset for the compositional 
generalization test (probably not the most effective way!)

• Trained a new set of baseline models (i.e., models w/o auxiliary training) due to vocabulary 
size increase from introducing additional data
• The only difference from previous models is the size of the vocabulary

• Trained each model 10 times with different random seeds
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Results (Transformer)

Substantial increase in generalization accuracy / reduction in variation 
across random restarts with glossing task as auxiliary objective!
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Results (LSTM)

No noticeable improvements with any auxiliary task
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Results (Bidirectional LSTM)

Minor benefit of denoising (“language modeling”)
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Transformer Error Analysis: Were the Target Errors Fixed?

Hypothesis about the benefit of glossing task: 
It will reduce single lexical errors by promoting faithfulness!

Average single lexical error rate for Transformer models without glossing task: 25.1%
Average single lexical error rate for Transformer models with glossing task: 5.7%
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INPUT:   A frog burned Sophia.

TARGET:  frog(𝑥1) 𝐴𝑁𝐷 burn.agent(𝑥2, 𝑥1) 𝐴𝑁𝐷 burn.theme(𝑥2, Sophia)
ERROR:   director(𝑥1) 𝐴𝑁𝐷 burn.agent(𝑥2, 𝑥1) 𝐴𝑁𝐷 burn.theme(𝑥2, Sophia)



Structural Generalization: No Success!

• No combination of model and auxiliary task yielded substantial improvements in structural 
generalization

• The best performance (2.4% accuracy) was achieved by a bidirectional LSTM model trained 
on both Glossing and CCG supertagging tasks
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Experiment 2: Deep Dive into Predictive Pretraining as Auxiliary Task

• Scale is usually considered important for the effectiveness of predictive pretraining as an 
auxiliary task (Kaplan et al. 2020)

• The amount of data that we used in Experiment 1 is very small (1.2M tokens)

• Small amount even for human learners: a lower-end estimate is ~3M words/year (Hart and 
Risley 1995, re-cited from Linzen 2020)

• Investigating the effect of data size on compositional linguistic generalization is important
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Setup

• Same sequential auxiliary task training setup with predictive pretraining (denoising)

• Different Transformer-based model (T5-small of Raffel et al. 2020) to allow investigation of 
much greater amount of training than our resources allow (34B tokens)

• Varied the amount of training (0, 1M, 5M, 25M, 50M, 100M, 1B, 34B tokens)
• 34B-token model is a publicly available model
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Results

More training 
data →
lower 
generalization 
accuracy!

No aux 

training

34B tokens
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Error Analysis: Homogeneity of Errors in Models with More Training

• An error analysis revealed that the model with the largest amount of training data (34B 
tokens) had a very homogeneous pattern of error (i.e., single lexical retrieval errors)
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INPUT:   A frog burned Sophia.

TARGET:  frog(𝑥1) 𝐴𝑁𝐷 burn.agent(𝑥2, 𝑥1) 𝐴𝑁𝐷 burn.theme(𝑥2, Sophia)
ERROR:   director(𝑥1) 𝐴𝑁𝐷 burn.agent(𝑥2, 𝑥1) 𝐴𝑁𝐷 burn.theme(𝑥2, Sophia)



Error Analysis: Homogeneity of Errors in Models with More Training

• …whereas the model without auxiliary training showed relatively diverse patterns

INPUT:   Lina drew Natalie.

TARGET:  draw.agent(𝑥2, Lina) 𝐴𝑁𝐷 draw.theme(𝑥1, Natalie)
ERROR:   draw.agent(𝑥2, Lina)
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More training 
data →
More unfaithful 
lexical errors

No aux 

training

34B tokens
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Again a case of 
Faithfulness/observe
d frequency 
competition? 
Predictive pretraining 
promotes the latter

Q: Does the rate of single lexical retrieval errors scale with data size?



Summary of Experiments

• Experiment 1: Comparing different auxiliary objectives

• The glossing task helped add a faithfulness bias to the Transformer model, but not to 
others

• CCG supertagging task did not help structural generalization
• Denoising marginally benefited bidirectional LSTMs

• Experiment 2: Investigating the effect of training data size in denoising (predictive 
pretraining)

• Surprisingly, more training data led to poorer compositional generalization
• Increased rate of single lexical errors (unfaithful errors)
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Takeaways

• Faithfulness is important for compositional linguistic generalization, and ANN learners tested 
often made generalizations that are unfaithful to the input (lack faithfulness bias)

• Inductive bias for faithful generalizations could be injected through an auxiliary task that 
consists of maximally faithful input-output mappings

• Larger amounts of auxiliary training on denoising (predictive pretraining) led to worse
compositional generalization 

• More pretraining data -> more unfaithful generalizations

• But almost complete failure, regardless of auxiliary training, on generalizing to novel 
structures (still somewhat true in follow-up studies: can talk more)
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Concurrent findings

• Several papers have achieved improvements beyond what’s discussed today…

• Akyürek & Andreas (2021): 83% acc. with LSTM + lexical translation + lexicon learning rule

• Csordás, Irie & Schmidhuber (2021): 81% acc. with modifications to the baseline setup
• No early stopping, relative positional embeddings, disabling label smoothing

• Bergen, O’Donnell & Bahdanau (2021): 87.4% with Edge Transformer

• Tay et al. (2021): 77.5% (pretrained Transformer) / 76.9% (pretrained Conv seq2seq) 
⚠ IMO confounded results—paper coming soon!

• Accuracy is more or less ~80%, which is about the ratio of lexical generalization cases in the 
dataset (~85%)
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Concurrent findings

• Not all papers report breakdowns, but…

59

Akyürek & Andreas (2021)

Structural 

generalization 

is hard!



Solutions that work

• Liu et al. (2021): Tree-LSTM with latent grammar learning for both syntactic/semantic algebra 
with homomorphism assumption between the two
• ~97% accuracy
• Very strong priors specific to the dataset—permitted semantic operations are pre-defined
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Structural 

generalization is 

hard (without very

strong priors)



Solutions that work

• Qiu et al. (2021): Induce a latent Quasi-Synchronous Context Free Grammar (QCFG), sample from 
the induced grammar and use the samples as additional training data
• 98.9% accuracy!
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Slightly more 

general approach 

(but arguably SCFG 

is still a quite 

specific prior)



Inspiration for a Follow-up Human Subject Study

TRAINING:  {The cat saw the rat on the mat,
The girl liked the cat on the table}

GENERALIZATION: The cat on the table saw the rat

• Predicted by context-free modification rules but not empirically attested

• Modifier generalization to unseen grammatical positions:
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